Lithium Niobate Crystal (LiNbO₃)

Introduction

LiNbO₃ Crystal is widely used as frequency doublers for wavelength >1μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Additionally due to its large Electro-Optic(E-O) and Acousto-Optic(A-O) coefficients, LiNbO₃ crystal is the most commonly used material for Pockel Cells, Q-switches and phase modulators, waveguide substrate, and surface acoustic wave(SAW) wafers, etc. **CASTECH** can provide LiNbO₃ crystals with high quality and large size for all these applications.

Structural and Physical Properties of LiNbO₃

Crystal Structure:	Trigonal, Space group R3c, Point group 3m
Cell Parameters:	a=5.148 Å, c=13.863 Å
Melting Point:	1253°C
Curie Temperature:	1140°C
Mohs Hardness:	5
Density:	4.64 g/cm ³
Elastic Stiffness Coefficients	C^{E}_{11} =2.33(×10 ¹¹ N/m ²) C^{E}_{33} =2.77(×10 ¹¹ N/m ²)

Optical and Electro-optical Properties of LiNbO₃

Transparency Range:	420-5200nm
Optical Homogeneity:	~ 5 x 10 ⁻⁵ /cm
Refractive Indices:	$n_e = 2.146, n_o = 2.220$ @ 1300 nm $n_e = 2.156, n_o = 2.232$ @ 1064 nm $n_e = 2.203, n_o = 2.286$ @ 632.8 nm
NLO Coefficients:	$d_{33} = 86 \times d_{36} \text{ (KDP)}$ $d_{31} = 11.6 \times d_{36} \text{ (KDP)}$ $d_{22} = 5.6 \times d_{36} \text{ (KDP)}$
Effective NLO Coefficients:	$\begin{array}{c} d_{\text{eff}}(I) = d_{31}\sin\theta - d_{22}\cos\theta\sin3\phi \\ d_{\text{eff}}(II) = d_{22}\cos^2\theta\cos3\phi \end{array}$
Electro-Optic Coefficients	$\gamma^{T}_{33} = 32 \text{ pm/V}, \gamma^{S}_{33} = 31 \text{ pm/V}, \gamma^{T}_{31} = 10 \text{ pm/V}, \gamma^{S}_{31} = 8.6 \text{ pm/V}, \gamma^{T}_{22} = 6.8 \text{ pm/V}, \gamma^{S}_{22} = 3.4 \text{ pm/V},$
Half-Wave Voltage, DC Electrical field // z, light \perp z: Electrical field // x or y, light // z:	3.03 KV 4.02 KV
Damage Threshold	100 MW/cm ² (10 ns, 1064nm)

Thermal and Electrical Properties of LiNbO₃

Melting Point:	1250°C
Curie Temperature:	1140°C
Thermal Conductivity:	38W/m/K @25°C
Thermal Expansion Coefficients (at 25°C):	//a, 2.0×10 ⁻⁶ /K //c, 2.2×10 ⁻⁶ /K
Resistivity:	2×10 ⁻⁶ Ω·cm @200°C
Dielectric Constants:	$ \begin{array}{lll} \varepsilon_{11}^{S}/\varepsilon_{0} = 43 & \varepsilon_{11}^{T}/\varepsilon_{0} = 78 \\ \varepsilon_{33}^{S}/\varepsilon_{0} = 28 & \varepsilon_{33}^{T}/\varepsilon_{0} = 32 \end{array} $
Piezoelectric Strain Constant:	D_{22} =2.04(×10 ⁻¹¹ C/N) D_{33} =19.22(×10 ⁻¹¹ C/N)

The Sellmeier equations (λ in μ m):

$$\begin{split} n_o^2 &= 4.9048 + 0.11768 / \left(\lambda^2 - 0.04750\right) - 0.027169 \lambda^2 \\ n_e^2 &= 4.5820 + 0.099169 / \left(\lambda^2 - 0.04443\right) - 0.02195 \lambda^2 \end{split}$$

Specifications

- Transmitting wavefront distortion: less than $\lambda/4$ @ 633 nm
- Dimension tolerance: (W \pm 0.1 mm) x (H \pm 0.1 mm) x (L \pm 0.2mm)
- Clear aperture: > 90% central area
- Flatness: $\lambda/8$ @ 633 nm
- Scratch/Dig code: 20/10 to MIL-PRF-13830B
- Parallelism: better than 20 arc seconds
- Perpendicularity: 5 arc minutes
- Angle tolerance: $< \pm 0.5^{\circ}$
- AR coating: dual wave band AR coating at 1064/532 nm on both surfaces, with R < 0.2% at 1064nm and R < 0.5% at 532nm per surface.

Other coatings are available upon request.