FEATURES - Output voltage up to 9 V_{pp} - Linear amplifier - · Flat gain up to 12 GHz - · Single voltage power supply - · Low group delay variation **APPLICATIONS** - LiNbO₃ modulators - OFDM, RF over fiber - · Linear amplification - Clock amplifier - Research & Development **OPTIONS** Heat-sink The DR-AN-10-MO is a wideband RF amplifier module designed for analog applications at frequencies up to 12 GHz. The DR-AN-10-MO is characterized by a low Noise Figure and a linear transfer function whose 1 dB compression point is above 21 dBm. It exhibits flat Group Delay and Gain curves with reduced ripple over the entire bandwidth. The DR-AN-10-MO comes in a compact 52 mm x 25.6 mm housing with K type RF connectors (compatible SMA) and with an optional heat-sink. It operates from a single power supply for safety and ease of use, and offers gain control over 3 dB. This amplifier module is ideally suited to drive optical modulators for analog applications. ### Performance Highlights | Parameter | Min | Тур | Max | Unit | |------------------------|------|------|-----|----------| | Cut-off frequencies | 50 k | 11 G | - | Hz | | Output voltage | 0 | - | 9 | V_{pp} | | Gain | 28 | 30 | - | dB | | Saturated output power | 23 | - | - | dBm | | Output power 1dB comp | 21 | 22 | - | dB | | Harmonics | - | - | -15 | dBc | | Noise Figure | 3 | - | 6 | dB | Measurements for $V_{bias} = 12 \text{ V}$, $V_{amp} = 1.2 \text{ V}$, $I_{bias} = 310 \text{ mA}$ **DRIVER** #### **DC Electrical Characteristics** | Parameter | Symbol | Min | Тур | Max | Unit | |------------------------|-------------------|-----|-----|-----|------| | Supply voltage (fixed) | V _{bias} | - | 12 | 13 | V | | Current consumption | l _{bias} | - | 300 | 400 | mA | | Gain control voltage | V _{amp} | - | 1.2 | 1.3 | V | #### **Electrical Characteristics** | Parameter | Symbol | Condition | Min | Тур | Max | Unit | |------------------------|--------------------------|------------------------------|-----|-----|------|----------| | Lower frequency | f _{3dB} , lower | -3 dB point | 50 | - | - | kHz | | Upper frequency | f _{3dB} , upper | -3 dB point | - | 11 | - | GHz | | Gain | S ₂₁ | Small signal, f < 10 GHz | 28 | 30 | - | dB | | Gain ripple | - | f < 10 GHz | - | - | ±1.5 | dB | | Input return loss | S ₁₁ | f < 10 GHz | - | -10 | - | dB | | Output return loss | S ₂₂ | f < 10 GHz | - | -15 | - | dB | | Isolation | S ₁₂ | f < 10 GHz | - | -60 | - | dB | | Output power 1dB | P _{1dB} | 2 GHz < f < 10 GHz | 21 | 22 | - | dBm | | Saturated output power | P _{sat} | 2 GHz < f < 10 GHz | 23 | - | - | dBm | | | ., | Linear | 0 | - | 7 | V_{pp} | | Output voltage | V _{out} | Maximum swing | 0 | - | 9 | | | Noise Figure | NF | 2 GHz < f < 10 GHz | 3 | - | 6 | dB | | Harmonics | Harm | @P _{1dB'} f < 5 GHz | - | - | -15 | dBc | | Power dissipation | Р | Small signal | - | 3.6 | 5.2 | W | Conditions: S parameters conditions : P $_{\rm in}$ = -30 dBm, T $_{\rm amb}$ = 25 °C, 50 Ω system ### **Absolute Maximum Ratings** Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. | Parameter | Symbol | Min | Max | Unit | |--------------------------|-------------------|-----|-----|------| | RF input voltage | V _{in} | - | 0.6 | V | | Supply voltage | V _{bias} | 0 | 13 | V | | DC current | bias | 0 | 400 | mA | | Gain control voltage | V _{amp} | 0 | 1.3 | V | | Power dissipation | P _{diss} | - | 5.2 | W | | Temperature of operation | T _{op} | 0 | +50 | °C | | Storage temperature | T _{st} | -10 | +70 | °C | # S_{12} Parameter Curve Conditions: $V_{bias} = 12 \text{ V}, V_{amp} = 1.2 \text{ V}, I_{bias} = 310 \text{ mA}$ ${\rm S_{22}~Parameter~Curve}_{\rm Conditions:~V_{\rm bias}} = 12~{\rm V,~V_{\rm amp}} = 1.2~{\rm V,~I_{\rm bias}} = 310~{\rm mA}$ S_{11} Parameter Curve Conditions: $V_{bias} = 12 \text{ V}, V_{amp} = 1.2 \text{ V}, I_{bias} = 310 \text{ mA}$ Saturated Output Power Curve # Noise Figure Curve # **Electrical Schematic Diagram** # Mechanical Diagram and Pinout All measurements in mm The heat-sinking of the module is necessary. It's user responsability to use an adequate heat-sink. Refer to page 5 for iXblue recommended heat-sink. | PIN | Function | Operational Notes | | |----------------|-------------------------------------|--|--| | IN | RF In | K-connector female | | | OUT | RF Out | K-connector male | | | $V_{\rm bias}$ | Power supply voltage | Set at typical operating specification | | | V_{amp} | Output voltage amplitude adjustment | Adjust for gain control tuning | | # Mechanical Diagram and Pinout with HS-MO2 Heat-sink All measurements in mm #### About us iXblue Photonics produces specialty optical fibers and Bragg gratings based fiber optics components and provides optical modulation solutions based on the company lithium niobate (LiNbO₃) modulators and RF electronic modules. iXblue Photonics serves a wide range of industries: sensing and instruments, defense, telecommunications, space and fiber lasers as well as research laboratories all over the world. 3, rue Sophie Germain 25 000 Besançon - FRANCE Tel.: +33 (0)1 30 08 87 43 IXblue reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products