

56 GBaud AND 32 GBaud SURFACE ILLUMINATED PHOTODIODES

AT A GLANCE

 surface illuminated InGaAs photodiodes for telecom and sensing applications

Features

- up to 56 Gb/s
- back side or top side illumination
- single diode or array configuration
- lens integration for back side illuminated photodiode (optional)
- integrated bias-T (optional)
- flip chip or wire bonding

Applications

- datacommunication
- telecommunication
- sensing

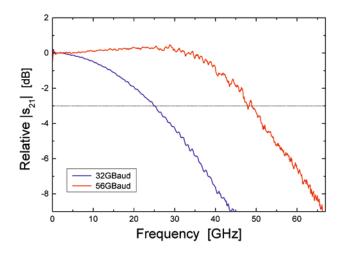
www.hhi.fraunhofer.de Products and Solutions

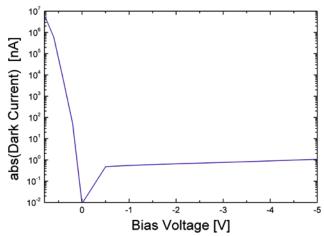
Technical Specifications

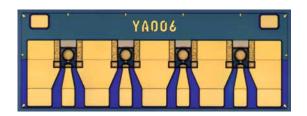
wavelength: 1060 nm - 1700 nm

responsivity:

32 Gb/s: 0.8 A/W @ 1550 nm 56 Gb/s: 0.7 A/W @ 1310 nm


3 dB-bandwidth: up to 45 GHz


low dark current: < 10 nA</p>


optical aperture: 18 μm

Customisation

- back side or top side illumination
- single diode or array configuration
- integrated bias-T (optional)
- lens integration for back side illuminated photodiode (optional)
- flip chip or wire bonding
- customised responsivity-bandwidth trade-off possible
- customised pitches and pad configurations possible

The Fraunhofer HHI

The Fraunhofer Heinrich Hertz Institute conducts research in the areas of video compression and processing, 3D systems, wireless communication as well as photonic components and networks.

Contact

Dr.-Ing. Patrick Runge

Photonic Components Fraunhofer Heinrich Hertz Institute

Einsteinufer 37 | 10587 Berlin | Germany

Phone +49 30 31002-498 patrick.runge@hhi.fraunhofer.de