

## NARROWBAND PHOTODETECTOR

#### AT A GLANCE

- Electrically resonant o/e conversion
- High-power capable
- 50 Ω-matched at resonance



#### **Features**

- O/E conversion up to 1 A/W
- Resonant frequencies up to 100 GHz
- C-Band operation

### **Applications**

- Clock recovery in the high Gbit/s data range
- O/E conversion in mm-wave cellular radio applications
- High power mm-wave generation by photonic means
- Antenna feeding
- Measurement applications

#### **REFERENCES**

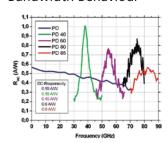
Alcatel-Lucent (Deutschland AG)

www.hhi.fraunhofer.de Products and Solutions

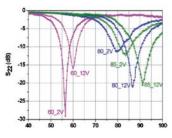


#### **Specifications**

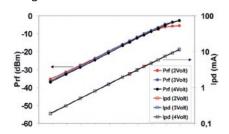
| O/E conversion at frequencies    | around 40/60/80/85/90/100 GHz |
|----------------------------------|-------------------------------|
| Internal resonant noiseless gain | 7 dB                          |
| High conversion efficiency       | up to 1 A/W                   |
| High power linear behaviour      | up to + 14 dBm                |
| Wavelength range                 | 1480 – 1620 nm                |


#### Miscellaneous Features

| Operating bias     | 2V typical (1 5 V for resonance tuning) |
|--------------------|-----------------------------------------|
| Optical input      | FC/PC (or customer specific)            |
| RF output          | 1 or 1.85 mm female (Agilent)           |
| Max. optical input | +18 dBm                                 |


#### Integration Scheme

# Coblock to bias from extern. board L1 > L2 L3 G Zeff Coplanar lines: 50 Ω Zload


#### Bandwidth Behaviour



Tuneability by Bias



High-Power Behaviour



The photodetector modules are lab samples and should not be used on any life critical application without prior written permission from the supplier. Specifications are subject to change without notice due to further product improvements.

#### The Fraunhofer HHI

One of the prime research and development foci of the Fraunhofer Heinrich Hertz Institute lies in photonic networks, components and systems and their application in fields such as digital media.

#### Contact

#### Dr.-Ing. Heinz-Gunter Bach

Photonic Components Fraunhofer Heinrich Hertz Institute

Einsteinufer 37 | 10587 Berlin | Germany

Tel +49 30 31002-503 heinz-gunter.bach@hhi.fraunhofer.de