

RDA012

12 Bit 1.1 GS/s DAC

Features

- ♦ 12 Bit Resolution
- 1.1 GS/s Sampling Rate
- 10 Bit Static Linearity
- 66dB SFDR with Fclk = 1.1GHz, Fout = 370MHz and 100MHz Bandwidth
- ECL Compatible Data Inputs
- Differential Analog Output
- Input code format: Offset Binary
- Output Swing: 600 mV with 50 Ω Termination to GND
- Differential ECL or Sinusoidal Clock Input
- Reference Output/Input Pin for Accurate Full-Scale Adjustment.
- -5.2V Power Supply
- 32 Lead QFP package

Figure 1- Functional Block Diagram

Product Description

The RDA012 is a high performance 12 Bit digital to analog converter (DAC) with a data update rate over 1.1 GS/s. Fabricated in an 80 GHz f_T GaAs HBT process, the RDA012 has been optimized for ultra-high speed applications, achieving 66dB of spurious-free dynamic range (SFDR) at 1.1 GS/s, with Fout of 370MHz and 100MHz of bandwidth. The DAC utilizes a

segmented current source to reduce glitch energy and to achieve high linearity performance. For better dynamic performance, the DAC outputs are internally terminated with 50Ω resistance. It outputs a nominally full-scale current of 12mA when terminated with external 50Ω resistors.

Ordering information

PART NUMBER	DESCRIPTION	CAUTION	
RDA012-QP	12 BIT 1.1GS/s DAC, QFP Package	DEVICE SUSCEPTIBLE TO	
RDA012-DI	12 BIT 1.1GS/s DAC, DIE	DAMAGE BY ELECTROSTATIC	
EVRDA012-QP	RDA012 Evaluation Board	DISCHARGE (ESD)	100

Teledyne Scientific Company reserves the right to make changes to its product specifications at any time without notice. The information furnished herein is believed to be accurate; however, no responsibility is assumed for its use.

Absolute Maximum Ratings

Supply Voltages VEEs to GND	6 V to 1 V
RF Input Voltages CLKIP, CLKIN	3 V to 1 V
Digital Input Voltages DI<0:11>	6 V to 1 V
Output Termination Voltages OUTP, OUTN	1 V to 1 V
Temperature	
Case Temperature	40 to 85 °C
Junction Temperature	
Lead, Soldering (10 Seconds)	220 °C
Storage	40 to 125 °C

DC Electrical Specification

Test Conditions (see notes for specific conditions): Room Temperature; VEEA = -5.2V; VEED = -5.2V; VREF = -2V; VECL = -1.3V; Clock: 1.1GHz, 0.6Vpp Differential; Outputs Terminated Into 50 Ω to 0V.

	PARAMETER	SYMBOL	CONDITIONS, NOTE		TYP	MAX	UNITS
1.0	DC TRANSFER FUNCTION						
1.1	Differential Nonlinearity	DNL	Maximum of Absolute Value		4		LSB
1.2	Integral Nonlinearity	INL	Maximum of Absolute Value		4		LSB
2.0	TEMPERATURE DRIFT						
2.1	Warm-up Time		After Power-up			30	s
3.0	CLOCK INPUT (CLKIP, CLKIN)						
3.1	Input Resistance	Z _{CIN}	Resistance to VTT	45	50	55	Ω
3.2	Input Capacitance	C _{CIN}			250		fF
4.0	DIGITAL INPUTS (DI<0:11>)						
4.1	Input Resistance	R _{DIN}			10K		Ω
5.0	ANALOG OUTPUTS (OUTP,	OUTN)					
5.1	Swing		Single Ended Into 50 Ω to GND		600		mVpp
6.0	REFERENCE (VREF)						
6.1	Input Resistance	R _{VREF}			560		Ω
6.2	Reference Voltage	V _{VREF}	Output from Internal Reference		-2		V
7.0	POWER SUPPLY REQUIREMENTS						
7.1	Power Dissipation	Р			1.8		W

AC Electrical Specification

Test Conditions (see notes for specific conditions): Room Temperature; VEEA = -5.2V; VEED = -5.2V; VREF = -2V; VECL = -1.3V; Clock: 1.1GHz, 0.6Vpp Differential; Outputs Terminated Into 50 Ω to 0V.

	PARAMETER	SYMBOL	CONDITIONS, NOTE	MIN	TYP	MAX	UNITS
8.0	DYNAMIC PERFORMANCE ¹ (note 1)						
8.1	SFDR	SFDR 1	52MHz Input ¹		66		dB
8.2	SFDR	SFDR 2	252MHz Input ¹		54		dB
8.3	SFDR	SFDR 3	340MHz Input ¹		54		dB
8.4	SFDR	SFDR 4	52MHz Input, 100MHz BW ¹		76		dB
8.5	SFDR	SFDR 5	340MHz Input, 100MHz BW ¹		66		dB

¹ Items 8.1, 8.2, 8.3 were measured using full Nyquist. Items 8.4 and 8.5 were measured using a 100MHz band centered at Fout.

Operating Conditions

	PARAMETER	SYMBOL	CONDITIONS, NOTE	MIN	TYP	MAX	UNITS
9.0	CLOCK INPUTS (CLKIP, CLK	(IN)					
9.1	Amplitude	V _{CPP}		400	600	800	mV
9.2	Common Mode Voltage	V _{CCM}		-0.8	-1.5	-2	V
9.3	Maximum Frequency	F _{MAX}		1100			MHz
10.0	DIGITAL INPUTS (DI<0:11>)						
10.1	Input High Voltage	VIH	$V_{ECL} = -1.3V$	-1.15	-0.95	-0.3	V
10.2	Input Low Voltage	VIL	$V_{ECL} = -1.3V$	-2.2	-1.75	-1.45	V
11.0	TERMINATION VOLTAGE (VTT)						
11.1	Reference Voltage	V _{TT}	Termination Voltage for CLKI		-2		V
12.0	REFERENCE (VECL)						
12.1	Reference Voltage	V _{ECL}	Reference Voltage for DI<0:11>	-2	-1.3	-0.5	V
13.0	REFERENCE (VREF) ² (note 2	2)					
13.1	Reference Voltage	V _{REF}		-2.5	-2	-1.2	V
14.0	POWER SUPPLY REQUIREN	IENTS					
14.1	Analog Supply Voltage	VEEA		-5.45	-5.2	-4.95	V
14.2	Digital Supply Voltage	VEED		-5.45	-5.2	-4.95	V
15.0	OPERATING TEMPERATURE ³ (note 3)						
15.1	Case Temperature	Tc	Measured at Bottom Plate	-15		85	°C
15.2	Junction Temperature	Tj				125	°C

² The DAC core current is generated from an internal reference that is both temperature and supply dependent. The Internal reference can change up to ±2% by changing the supply voltage within the specified range. It can also change up to ±5% according to operating temperature changes. The change in temperature and supply can be minimized by using a precision external voltage reference source connected to VREF.

³ The part is designed to function with a junction temperature up to 125°C. For the best performance, operation within the specified temperature range with a proper heatsink attached to the device is recommended. The heatsink should be attached to the bottom of the PCB, on a metal pad connect by thermal vias to the metal pad where the part is soldered.

Pin Description and Layout

P/I/O	PIN	NUM.	NAME	FUNCTION
Р	19, 20, 21, 22	4	VEEA	-5.2V Analog Power Supply
Р	13, 27	2	VEED	-5.2V Digital Power Supply
Р	10, 16, 17, 18, 23, 24, 25	7	GND	Ground
Р	Bottom Plate	-	GND	Ground
I/O	26	1	VREF	-2V Reference Voltage
I	31	1	VECL	Digital Input Reference
	29	1	VTT	CLKI Clock Termination Voltage
	28	1	CLKIP	Clock Input
I	30	1	CLKIN	
I	32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12	12	DI<0:11>	DI <i> Is Digital Bit i Input. MSB is bit 11</i>
0	15	1	OUTP	Analog Output
0	14	1	OUTN	Analog Oulpul

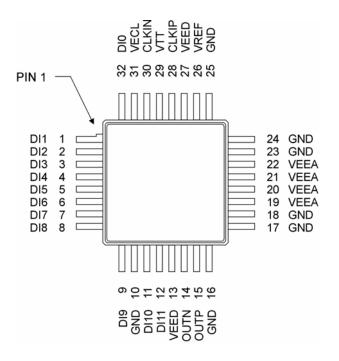


Figure 2 - RDA012-QP pinout (top view).

Pad Layout

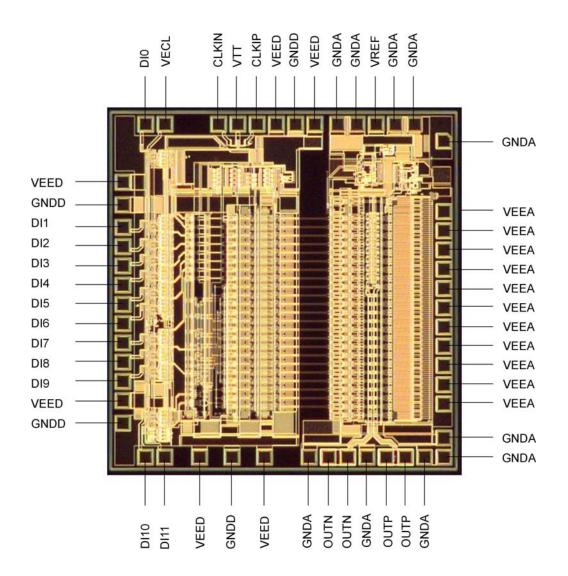
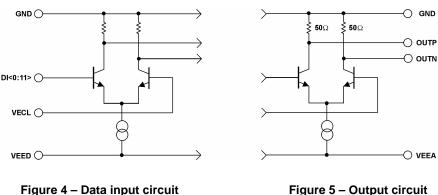
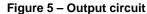
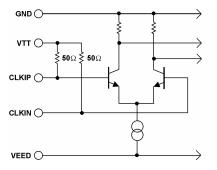


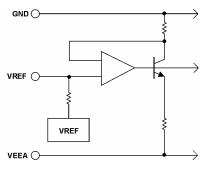
Figure 3 - RDA012 pad layout. Die size is 2650 x 2740 µm.




Theory of Operation


For best dynamic and static performance, the RDA012 DAC employs 4 Bit segmentation. The ECL compatible 12 Bit digital data inputs are latched by master-slave flip-flops immediately after the input buffer to reduce the data skew. The 4 MSB data bits are decoded into thermometer code by a two-stage decoding block, and the 8 LSB data bits are transported through the delay equalizer block. The digital data are then synchronized again by a second master-slave flip-flop to reduce the switching The decoded 4 MSB data drive 15 glitch. identical current switches, and the 8 LSB data drive 8 current switches. The output nodes from the LSB current switches are connected to the analog output through an R-2R ladder to

generate the binary output. The RDA012 DAC provides output terminated at 50Ω , illustrated in an equivalent circuit in Figure 5. The output fullscale voltage follows the relationship V_{FS} = An internal reference circuit with $0.3 x V_{RFF}$ approximately -10dB supply rejection is integrated on chip for application convenience, and the reference pin is provided for monitoring and for bypass purposes. To band-limit the noise on the reference voltage, the reference pin should be bypassed to the GND with capacitance > 100pF. The VREF pin can also be used to override the internal reference with an accurate, temperature-compensated external voltage reference.


Equivalent Circuit

Signal Description

HIGH SPEED INPUT CLOCK.

The RDA012 DAC high-speed clock input is differential and can be driven from typical ECL circuits. Also a differential sinusoidal clock can be used. The CLKIP and CLKIN inputs, are internally terminated with 50Ω to VTT which should be connected to a well decoupled –2.0V supply. Since the DAC's output phase noise is directly related to the input clock noise and jitter, a low-jitter clock source is ideal. The internal clock driver generates very little added jitter (~100fs).

DATA INPUT.

The data inputs are single ended ECL compatible. VECL is used as a voltage reference for the data input buffers (Figure 4).

ANALOG OUTPUT.

The outputs OUTP and OUTN should both be connected though a 50 Ω resistor to ground. This will give a full-scale amplitude of 0.6 volt (both outputs must be terminated), 1.2 volt differentially. The output common mode can be changed by terminating the load resistors to a different voltage. However, the device is optimized to perform best when connected to a voltage between 0 and 1 volt. For reliable operation, the output termination voltage should not exceed 3 volts.

REFERENCE.

VREF is provided for added control of the fullscale amplitude output. The internal reference circuit is designed to provide -2.0V, which can change up to \pm 5% as the supply voltage and/or operating temperature changes. If the user prefers accurately control the output full-scale signal, an external voltage reference with low output impedance to override the internal reference should be used. The output full-scale voltage follows the relationship V_{FS} = 0.3xV_{REF}. Note that the RDA012 DAC is optimized to have the best performance with a reference voltage of -2.0V. The output resistance of the reference node is 560 $\Omega \pm 10\%$.

Typical Operating Circuit

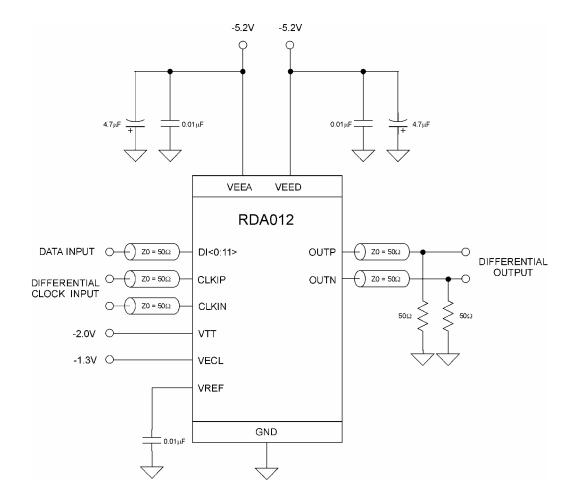


Figure 8 - RDA012 typical operating circuit using the internal voltage reference.

Typical Performance

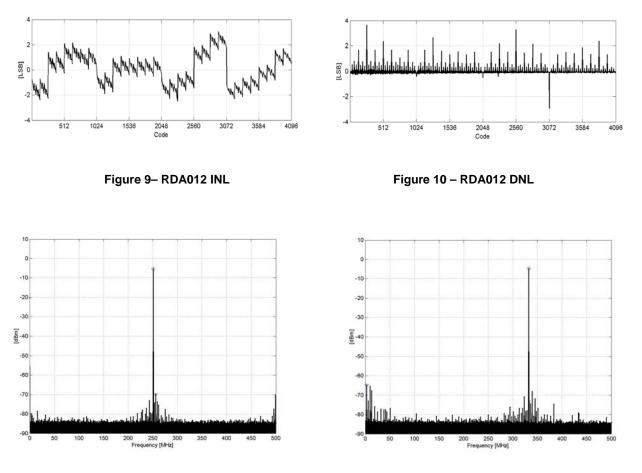


Figure 11 – Spectrum at Fclk=1GHz, Fout=250MHz

Figure 12 – Spectrum at Fclk=1GHz, Fout=333MHz

Package Information

The package is a 32 lead metal ceramic base, glass sidewall Quad Flat Pack (QFP) with a heatsink slug

on the package's bottom. The leads are gull-winged formed.

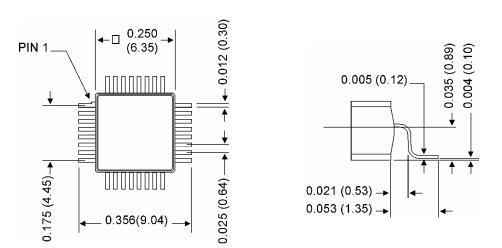


Figure 13 - RDA012-QP package, dimensions shown in inches (mm).

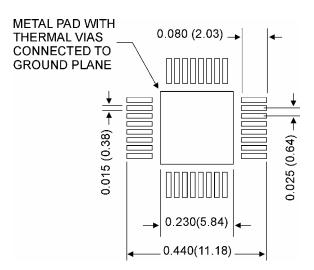


Figure 14 - RDA012-QP footprint, dimensions shown in inches (mm).