

RDA112M4MSLPD

12 Bit 2.0 GS/s Low Power Master-Slave Differential 4:1 MUXDAC

Features

- 12 Bit Resolution
- 2.0 GS/s Sampling Rate
- 4:1 or 2:1 Multiplexed Data Input LVDS Compatible
- Divided by 2, 4 or Divided by 8 Clock Out (DDR Support)
- Master-Slave Mode for Synchronous Operation (Multiple Devices)
- Differential Analog Output
- Adjustable Output Signal: Up to 600mV (single-ended)
- Offset Binary Input Code Format
- DNL: ±2 LSB Typical
- INL: ±2 LSB Typical
- 3.3V Power Supply, 2.5V for Input Signals
- 1.1W Power Dissipation Typical
- 224 Balls BGA Package

Product Description

The RDA112M4MSLPD is a low-power 12 bit digital to analog converter (DAC) with a data sampling rate of 2.0GS/s. It has been optimized for applications demanding a high performance low-power DAC, achieving more than 50 dBc of spurious free dynamic range (SFDR) at 2 GS/s with f_{out} of 667 MHz. Interface to the DAC is made easy by its multiplexer (in 4:1 or 2:1 mode), allowing direct connection to a FPGA or

Figure 1 - Functional Block Diagram

ASIC with no extra components. The DAC utilizes a segmented current source to reduce glitch energy and achieve high linearity performance. For better dynamic performance, the DAC outputs are internally terminated with 50Ω resistors. It outputs a nominally 300mVpp signal when terminated with external 50Ω resistors.

Ordering information

PART NUMBER	DESCRIPTION	
RDA112M4MSLPD-DI	12 BIT 2.0GS/s MUXDAC, DIE	CAUTION
RDA112M4MSLPD-BG	12 BIT 2.0GS/s MUXDAC, BGA Package	DAMAGE BY ELECTROSTATIC
EVRDA112M4MSLPD-BG	RDA112M4MSLPD-BG Evaluation Board	DISCHARGE (ESD)

Teledyne Scientific Company reserves the right to make changes to its product specifications at any time without notice. The information furnished herein is believed to be accurate; however, no responsibility is assumed for its use.

Absolute Maximum Ratings

Supply Voltages

Between GNDs	-0.3V to 0.3V
Between VDDA and VDD33	-0.3V to 0.3V
VDDA, VDD33 to GND	0V to 3.8V
VDD25 to GND	0V to 2.9V

RF Input Voltages

HCLKIP, HCLKIN	to GND	 0V	to VDD33
LCLKIP, LCLKIN	to GND	 0V	to VDD33

HS Digital Input Voltages

טוט
DIO
DIO
DIO

Output Termination Voltages

OUTP, OUTN to GND 0	V to VDDA+1V
---------------------	--------------

Temperature

Case Temperature	15 to 85 °C
Junction Temperature	120 °C
Storage	-40 to 125 °C

DC Electrical Specification

Test Conditions (see notes for specific conditions): Room Temperature; VDDA = 3.3V; VDD33 = 3.3V; VDD25 = 2.5V; VDDIO = 2.5V; VTT = 1.3V; VREF = 1.2V; MSM = master; MXSEL = 4:1; RBS = 1K6 Ω ; Clock: 2GHz, 0.6Vpp Differential; Outputs Terminated into 50 Ω to 3.3V.

	PARAMETER	SYMBOL	CONDITIONS, NOTE	MIN	ТҮР	MAX	UNITS
1.0	DC TRANSFER FUNCTION						
1.1	Differential Nonlinearity	DNL	Maximum of Absolute Value		2		LSB
1.2	Integral Nonlinearity	INL	Maximum of Absolute Value		2		LSB
2.0	TEMPERATURE DRIFT						
2.1	Warm-up Time		After Power-up			30	S
3.0	HIGH CLOCK INPUT (HCL	KIP, HCLK	IN)				
3.1	Input Resistance	R _{CLKI}	Resistance (HCLKI P/N) to VTT		50		Ω
3.2	Input Capacitance	C _{CLKI}			500		fF
4.0	LOW CLOCK INPUT (LCL)	(IP, LCLKI	N)				
4.1	Input Resistance	RLCLKI	Resistance from LCLKIP to LCLKIN		100		Ω
4.2	Input Capacitance	CLCLKI			500		fF
5.0	LOW CLOCK OUTPUT (LC	LKOP, LCI	LKON)				
5.1	Amplitude	V _{CPP,LCLKO}	LCLKO P/N Terminated into 100Ω		400		mVpp
5.2	Common Mode Voltage	V _{CM,LCLKO}			1200		mV
6.0	DIGITAL INPUTS (DIA<0:1	1>(P/N), DI	B<0:11>(P/N), DIC<0:11>(P/N), DID<0:1	1>(P/N))			
6.1	Input Resistance	R _{DIN}	Differential (from DI <n>P to DI<n>N)</n></n>		100		Ω
6.2	Input Capacitance	C _{DIN}			500		fF
7.0	ANALOG OUTPUTS (OUT	P, OUTN)					
7.1	Full-scale Output Swing	V _{FSD}	Differential, Terminated Into 50 Ω to VDD=3.3V on Each Output		600	1200	mVpp
7.2	Full-scale Output Swing	V _{FSS}	Single Ended, Terminated Into 50Ω to VDD=3.3V		300	600	mVpp
7.3	Full-scale Output Range	V _{FSRS}	Single Ended, Terminated Into 50Ω to VDD=3.3V (MIN=000h, MAX=FFFh)	2.7		3.3	Vpp
7.4	Output Current	I _{OUT}	Terminated Into 50Ω to VDD=3.3V		6.3		mA
8.0	REFERENCE (VREF)		-				
8.1	Reference Voltage	V _{VREF}	Output from Internal Reference		1.2		V
9.0	POWER SUPPLY REQUIR	EMENTS					
9.1	Analog Current	IDDA			50		mA
9.2	Digital Current	IDD33			180		mA
9.3	Digital Current	IDD25			85		mA
9.4	I/O Current	IDDIO			70		mA
9.5	Power Dissipation	Р			1150		mW

AC Electrical Specification

Test Conditions (see notes for specific conditions): Room Temperature; VDDA = 3.3V; VDD33 = 3.3V; VDD25 = 2.5V; VDDIO = 2.5V; VTT = 1.3V; VREF = 1.2V; MSM = master; MXSEL = 4:1; RBS = $1K6\Omega$; Clock: 2GHz, 0.6Vpp Differential; Outputs Terminated into 50Ω to 3.3V.

	PARAMETER	SYMBOL	CONDITIONS, NOTE	MIN	ТҮР	MAX	UNITS
10.0	DYNAMIC PERFORMANCE	•					
10.1		SFDR 1	F _{CLK} = 1000MHz, F _{OUT} = 20MHz		70		dBc
10.2		SFDR 2	F _{CLK} = 1000MHz, F _{OUT} = 250MHz		67		dBc
10.3		SFDR 3	F _{CLK} = 1000MHz, F _{OUT} = 333MHz		60		dBc
10.4		SFDR 4	F _{CLK} = 1000MHz, F _{OUT} = 480MHz		61		dBc
10.5	Spurious Free Dynamia	SFDR 5	F _{CLK} = 1500MHz, F _{OUT} = 30MHz		67		dBc
10.6	Bango (Single Ended	SFDR 6	F _{CLK} = 1500MHz, F _{OUT} = 370MHz		64		dBc
10.7		SFDR 7	F _{CLK} = 1500MHz, F _{OUT} = 500MHz		61		dBc
10.8	Output)	SFDR 8	F _{CLK} = 1500MHz, F _{OUT} = 720MHz		52		dBc
10.9		SFDR 9	F_{CLK} = 2000MHz, F_{OUT} = 40MHz		62		dBc
10.10	-	SFDR 10	F _{CLK} = 2000MHz, F _{OUT} = 500MHz		53		dBc
10.11		SFDR 11	F _{CLK} = 2000MHz, F _{OUT} = 666MHz		52		dBc
10.12		SFDR 12	F _{CLK} = 2000MHz, F _{OUT} = 960MHz		45		dBc
10.13	Clock Feedthrough	FD			-40		dBc
11.0	LOW CLOCK OUTPUT (LCL	KOP, LCLK	ON)				
11.1	Delay	T _{LCDLY,HCLKI}	Propagation Delay HCLKI to LCLKO	410		630	ps
12.0	ANALOG OUTPUTS (OUTP,	OUTN)					
12.1	Rise Time	T _{R,OUT}			400		ps
12.2	Fall Time	T _{F,OUT}			400		ps

Operating Conditions

	PARAMETER	SYMBOL CONDITIONS, NOTE		MIN	ТҮР	MAX	UNITS
13.0	HIGH CLOCK INPUT (HCLKIP, HCLKIN)						
13.1	Amplitude	V _{CPP,HCLKI}		200		1000	mVpp
13.2	Common Mode Voltage	V _{CCM,HCLKI}		2000		2800	mV
13.3	Maximum Frequency	F _{MAX,HCLKI}		2000			MHz
13.4	Minimum Frequency	F _{MIN,HCLKI}				1	MHz
14.0	LOW CLOCK INPUT (LCLK	IP, LCLKIN)					
14.1	Amplitude	V _{CPP,LCLKI}		200		1000	mVpp
14.2	Common Mode Voltage	V _{CCM,LCLKI}		500		VDDIO- 500	mV
14.3	Setup Time	T _{LCSET,HCLKI}	Setup Time LCLKI to HCLKI	600			ps
14.4	Hold Time	T _{LCHLD,HCLKI}	Hold Time LCLKI to HCLKI	-270			ps
15.0	DIGITAL INPUTS (MSM, M)	(SEL, CLKSEL	., DLSEL<0:1>)				
15.1	Input High Voltago	V		VDDIO-			m\/
	input High voltage	V IH,CTRI		500		VDDIO	IIIV
15.2	Input Low Voltage	V _{IL,CTRI}		0		0.5	V
16.0	DIGITAL INPUTS (DIA<0:11	>(P/N), DIB<0	:11>(P/N), DIC<0:11>(P/N), DID<0:	11>(P/N))			
16.1	Amplitude	V _{CPP,DI}		200		1000	mVpp
16.2	Common Mode Voltage	V _{CCM,DI}		500		VDDIO- 500	mV
16.3	Setup Time	T _{DISET,LCLKO}	Setup Time DI to LCLKO	650			ps
16.4	Hold Time	T _{DIHLD,LCLKO}	Hold Time DI to LCLKO	-300			ps
17.0	TERMINATION VOLTAGE	VTT) ¹ (note 1)					
17.1	Termination Voltage	V _{TT}	Termination Voltage for HCLKI		1.3		V
18.0	REFERENCE VOLTAGE (V	REF) ² (note 2)					
18.1	Reference Voltage	V _{REF}			1.2		V
19.0	POWER SUPPLY REQUIRE	EMENTS					
19.1	Analog Supply Voltage	VDDA		3.1	3.3	3.5	V
19.2	Digital Supply Voltage	VDD33		3.1	3.3	3.5	V
19.3	Digital Supply Voltage	VDD25		2.3	2.5	2.7	V
19.4	I/O Supply Voltage	VDDIO		2.3	2.5	2.7	V
20.0	OPERATING TEMPERATU	RE ³ (note 3)					
20.1	Case Temperature	Тс				85	°C
20.2	Junction Temperature	Tj				120	°C

¹ The termination voltage of 1.3V is to be used if the HCLKI source is a LVPECL driver in a DC coupled connection. If the HCLKI source is AC coupled VTT should be 2V.

² The DAC core current is generated from an internal reference that is both temperature and supply dependent. The Internal reference can change up to ±2% by changing the supply voltage within the specified range. It can also change up to ±5% according to operating temperature changes. The change in temperature and supply can be minimized by using a precision external voltage reference source connected to VREF.

³ The part is designed to function within a junction temperature range of -40 ~ 120°C. For the best performance, operation within the specified temperature range with a proper heatsink attached to the device is recommended.

Pin Description

P/I/O	PIN	NUM.	NAME	FUNCTION
Р	B3, B9, B10, B13, B14, C5, C6, C7, C8,C9, C10, C11, C12, C13, C14, C15	16	VDDA	Analog Power Supply
Р	E3, F3, F16, G16	4	VDD33	Digital Power Supply, 3.3V
Р	A2, F1, G18	3	VDD25	Digital Power Supply, 2.5V
Р	G1, G3, K1, K3, K16, K18, N1, N3, N16, N18, T1, T3, T9, T10, T16, T18	16	VDDIO	I/O Power Supply
Р	A6, A7, A9, A10, A13, B5, B6, B7, B8, B11, B12, B15, B16, C1, C4, D2, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, E2, E4, F2, F4, F15, F17, F18, G2, G4, G15, G17, K2, K4, K15, K17, N2, N4, N15, N17, R9, R10, T2, T4, T15, T17	52	GND	Ground
I	B4	1	RBS	External Resistor for Bias Reference
I	A3, A4	2	CCMP(P/N)	External Compensation Capacitor
I	A5	1	VREF	1.2V External Reference Voltage
I	D3	1	VTT	HCLKI Termination Voltage
I	C2	1	CLKSEL	Low Clock Selection: High DDR Low SDR
I	B2, B1	2	DSEL<0:1>	Clock Delay Selection: 0 – 1 HCLK Delay 1 – 2 HCLK Delay 2 – 3 HCLK Delay 3 – 4 HCLK Delay
I	C3	1	MSM	Master Slave Selection: High Slave Low Master
I	A1	1	MXSEL	Multiplexer Selection: High 2:1 Channel AD Low 4:1 Channel ABCD
	E1	1	HCLKIP	High Clock Input
I	D1	1	HCLKIN	
I	H15, L15, P15, U18, R14, R12, R8, R6, U4, R4, M4, J4	12	A<0:11>P	A <i> Is Channel A Digital Bit i Input MSB is bit 11</i>
I	H16, L16, P16, V18, T14, T12, T8, T6, V4, R3, M3, J3	12	A<0:11>N	
Т	J15, M15, R15, U17, R13, R11, R7, R5, U3, P4, L4, H4	12	B<0:11>P	Rcis le Channel R Digital Rit i Innut MSR is hit 11
I	J16, M16, R16, V17, T13, T11, T7, T5, V3, P3, L3, H3	12	B<0:11>N	
I	H17, L17, P17,U16, U14, U12, U8, U6, U2, R2, M2, J2	12	C<0:11>P	Ccip le Channel C Dinital Rit i Innut MSR is hit 11
I	H18, L18, P18, V16, V14, V12, V8, V6, V2, R1, M1, J1	12	C<0:11>N	
I	J17, M17, R17, U15, U13, U11, U7, U5, V1, P2, L2, H2	12	D<0:11>P	Drix le Channel D Digital Rit i Input MSR is hit 11
I	J18, M18, R18, V15, V13, V11, V7, V5, U1, P1, L1, H1	12	D<0:11>N	
	U9 V9	1	LCLKIP	Low Clock Input
0	U10	1	LCLKOP	
Õ	V10	1	LCLKON	Low Clock Output
0	A12	1	OUTP	
0	A11	1	OUTN	Differential Output
R	A8, A14, A15, A16, A17, A18, B17, B18, C16, C17, C18, D15, D16, D17, D18, E15, E16, E17, E18	19	RES	Reserved

Pin Layout (TOP view)

Figure 2 - RDA112M4MSLPD pinout. (top view)

Typical Operating Circuit

Figure 3 - RDA112M4MSLPD typical operating circuit, single device, SDR output clock, using internal voltage reference.

Figure 4 - RDA112M4MSLPD typical operating circuit in master-slave configuration.

Figure 5 - RDA112M4MSLPD placement in master-slave configuration.

Equivalent Circuit

Figure 6 - RDA112M4MSLPD high speed clock input circuit (HCLKI), showing a single ended clock source. The clock common mode is set by VTT (which in an AC coupled clock configuration is 2V).

Figure 7 - RDA112M4MSLPD low speed clock input (LCLKI) and data in input (DI<A,B,C,D>) circuit.

Figure 8 - RDA112M4MSLPD low speed clock output (LCLKO) circuit.

Figure 9 - RDA112M4MSLPD control input (CKSEL, DSEL<0:1>, MSM, MXSEL) circuit. Term is internally connected to GND except if the input is CLKSEL, in which case Term is connected to VDD25.

Figure 10 - RDA112M4MSLPD voltage reference circuit.

Typical Performance

Figure 11 – Spectrum for F_{CLK}=1GHz, F_{OUT}=260MHz.

Figure 12 – Spectrum for F_{CLK}=1.5GHz, F_{OUT}=490MHz.

Package Information

Figure 14 - RDA112M4MSLPD-BG package, dimensions shown in inches (mm).

Teledyne Scientific Company reserves the right to make changes to its product specifications at any time without notice. The information furnished herein is believed to be accurate; however, no responsibility is assumed for its use.