

HL9407 Broadband Balun (67 GHz)

Features and Technical Specifications

	ennieur epeenieure
Bandwidth (-3 dB)	5 MHz to 67 GHz
	± 0.1 dB to 30 GHz
Amplitude Match	± 0.3 dB to 67 GHz
	See Fig. 1 below
	± 2-4° to 20 GHz
Phase Match	± 4-8° to 50 GHz
	See Fig. 2 below
Rise time	< 5.2 ps
Insertion Delay	≈ 278 ps
Insertion Loss	-6 dB
Return Loss	See Figs. 3-4 below
/SWR	<u>See Fig. 5 below</u>
	> 70 dB at 10 MHz
CMRR	> 30 dB at 50 GHz
	See Fig. 6 below
Eye Diagrams	See Figs. 8-13 below
Max Input Power	+30 dBm
mpedance	50 Ω In, 2 x 50 Ω Out
Connectors	1.85 mm; 3x Jack/Female
	60.80 x 38.1 x 13.87 mm
Dimensions	2.39" x 1.50" x 0.55"
Weight	45 g (1.6 oz)
Temperature Limits	-40° to +100° C, operating
RoHS Compliance	Made with lead-free solder
Warranty	1 year, see website

OYMENT NOTES

absinc.com

NUSA

ugh the HL9407 ports are laas RF In/Out, this device is ctional and can be used either ignal splitter or combiner.

DC voltage of the input or outnot zero, DC block capacitors quired.

TIONAL DATA

r-resolution versions of the on the following pages are ble on our website, along with ameter files with normal and -mode data to 67 GHz.

PRODUCT SUMMARY

The HL9407 is a signal splitter and combiner that offers industry-best amplitude and phase match over a bandwidth of 5 MHz to 67 GHz (-3 dB).

It is suitable for use in 40 Gbps communications systems, high-speed analog-to-digital conversion, frequency response testing for differential devices, and many other applications.

HL9407 Bandwidth

Bandwidth for all HYPERLABS baluns is defined as the range of frequencies where insertion loss is within -3 dB of the reference level (-6 dB).

Figure 1 below shows better than -9 dB insertion loss up to 67 GHz when the device is used as a signal splitter.

HL9407 Amplitude Match

Amplitude match is a comparison between the signals on the RF Out +/- ports of a balun used as a signal splitter. This specification is derived from the insertion loss (in dB) measured on the output ports of the device.

Figure 1 below shows typical HL9407 insertion loss from 5 MHz to 67 GHz when the device is used as a signal splitter.

The amplitude balance can be seen by comparing the non-inverting output (blue trace), with the inverting output (red trace).

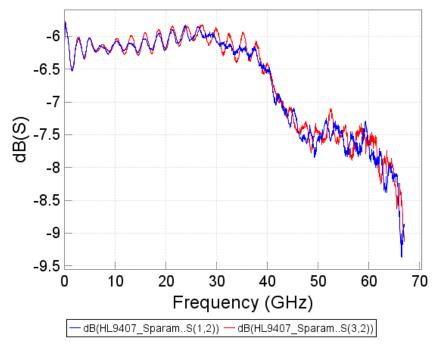


Figure 1: Typical insertion loss and amplitude match of the HL9407 RF Outputs when used as a signal splitter

When the HL9407 is used as a combiner, mixed mode parameters provide additional information on device performance.

For more on the HL9407 performance as a signal combiner, please see the section titled "HL9407 Mixed Mode Data".

HL9407 Phase Match

The HL9407 is a 180° balun, so the phase match of the RF Out+ and RF Out- ports is specified to degrees from 180°.

Match is dependent on the delay of the output ports. For example, 2 degree mismatch at 10 GHz requires the delays be within ≈ 0.5 ps of each other. Phase mismatch increases with frequency.

Figure 2 below shows phase mismatch between the RF Outputs from 5 MHz to 67 GHz. The vertical range is 0-12°.

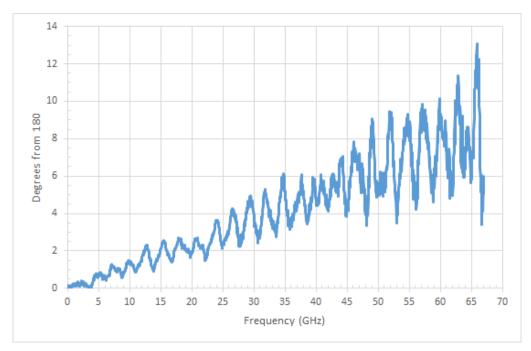


Figure 2: HL9407 phase match, represented as degrees from 180°

HL9407 Return Loss

Figure 3 shows the return loss on the HL9404 RF Input of a device used as a signal splitter. *Figure 4* shows the return loss on the RF Output+ port of a device used as a signal combiner. In both cases, bandwidth is from 5 MHz to 40 GHz.

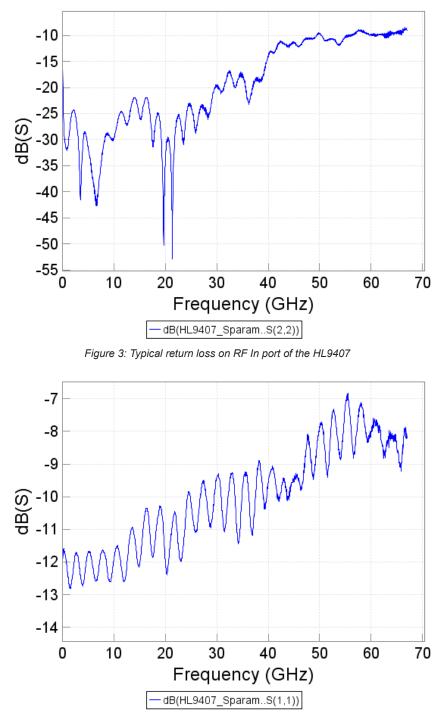


Figure 4: Typical return loss (S11) on the HL9405 RF Output+ ports

HL9407 VSWR

The typical Voltage Standing Wave Ratio (VSWR) of the HL9407 is shown in *Figure 5* below.

The blue and orange traces show typical VSWR on the RF In and RF Out+ ports, respectively.

Figure 5: Typical VSWR of HL9407 RF Input and RF Out+

HL9407 CMRR

The exceptional Common Mode Rejection Ratio (CMRR) of the HL9407 allows it to be used as a signal combiner as well as a splitter.

Figure 6 shows the CMRR of the HL9407 when used to combine a differential signal from a 50 GHz VNA source.

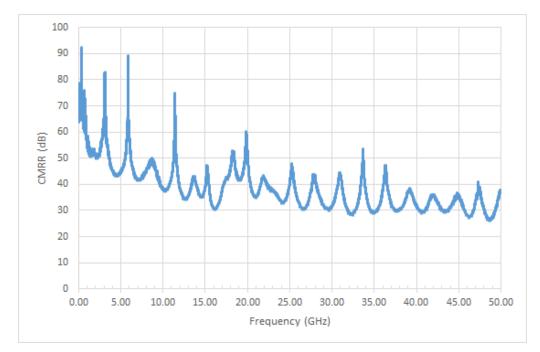


Figure 6: HL9407 CMRR (to 50 GHz)

HL9407 Mixed Mode Data

The unique design of HYPERLABS baluns allows the HL9407 to be used as a signal combiner as well as a signal splitter.

In combiner mode, the balun converts a differential source signal into a single-ended output, minimizing common mode noise and harmonic distortion.

For this reason, HL9407 combiner performance is best characterized from mixed-mode Sparameters using a 4-port VNA as a differential source.

Full mixed-mode data for the HL9407 is found in the S-parameters file available on the HY-PERLABS website. *Figure 7* below shows the mixed-mode measurements of a typical HL9407

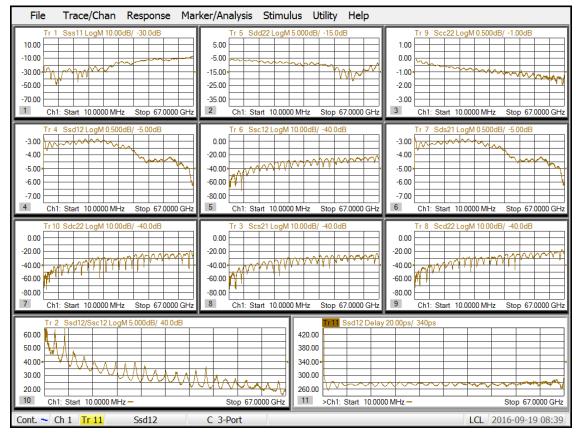


Figure 7: Mixed mode data for the HL9407 measured on a VNA with differential source to 67 GHz

unit.

HL9407 Eye Diagrams

The following pages contain pseudo-random binary sequence (PRBS) eye diagrams for the HL9407. Measurements were taken at 10 Gbps, using long (31-bit) and short (7-bit) patterns.

Figure 8: 10 Gbps PRBS pattern as applied to the HL9407 RF In port

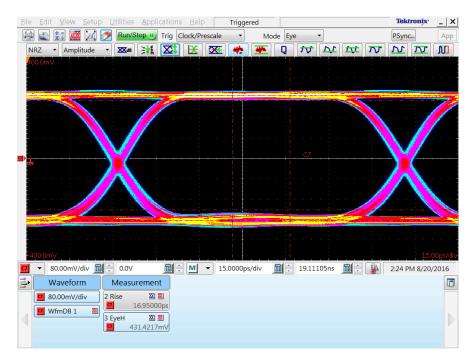


Figure 9: Eye diagram (10 Gbps, 7-bit pattern) of the HL9407 RF In port

HL9407 Eye Diagrams (cont.)

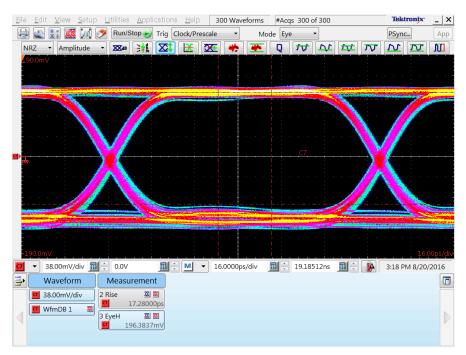


Figure 10: Eye diagram (10 Gbps, 7-bit pattern) of the HL9407 RF Out+ (non-inverting) port

Figure 11: Eye diagram (10 Gbps, 31-bit pattern) of the HL9407 RF Out+ (non-inverting) port

HL9407 Eye Diagrams (cont.)

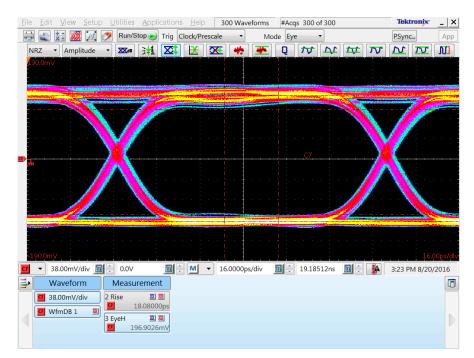


Figure 12: Eye diagram (10 Gbps, 7-bit pattern) of the HL9407 RF Out- (inverting) port

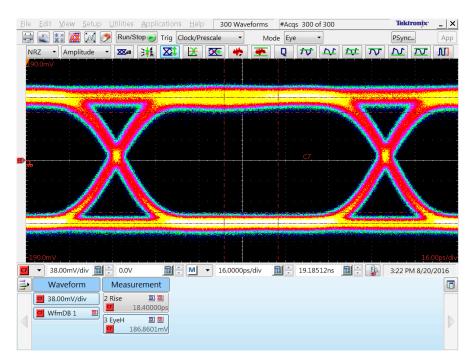


Figure 13: Eye diagram (10 Gbps, 31-bit pattern) of the HL9407 RF Out- (inverting) port