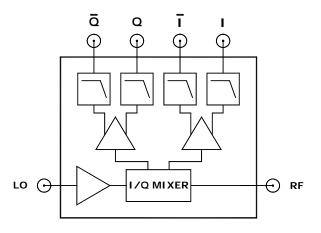
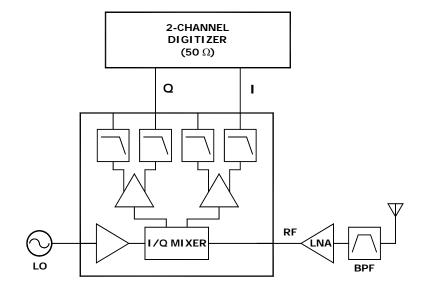


FEATURES

LO/RF Frequency: 9 – 12 GHz
I/Q Bandwidth: 275 MHz
Input IP3: +23 dBm
Input P1dB: +13 dBm
Amplitude Imbalance: ±0.1 dB
Phase Error: -1 Degree
LO Power: +5 dBm


DC Supplies: +5V @ 110 mA, -5V @ 40 mA

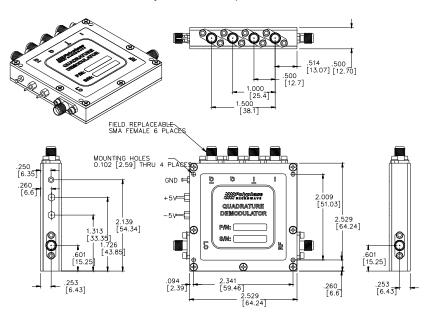

DESCRIPTION

When a LO signal is applied, the AD90120B converts the RF input signal centered at the LO frequency directly to baseband I and Q outputs. Integral low pass filters provide I and Q anti-alias filtering. The AD90120B's differential I and Q outputs can be directly connected to 50 Ω digitizers or instrumentation.

The AD90120B can be easily interfaced with differential high-speed analog-to-digital converters (ADCs). For more information, please refer to the **APPLICATIONS** section of this datasheet.

TYPICAL APPLICATION: DIRECT CONVERSION RECEIVER

ELECTRICAL SPECIFICATIONS

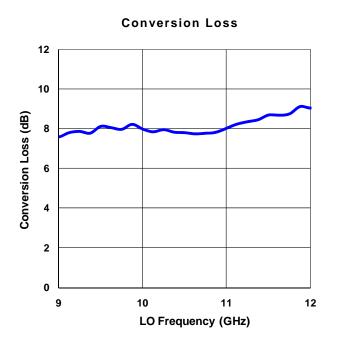

Test Conditions: +25°C, LO = +5 dBm, RF input = +0 dBm @ LO+100 kHz unless otherwise noted.

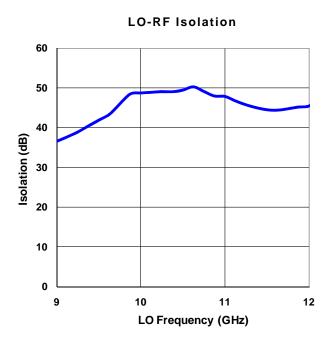
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
LO/RF Frequency Range ¹		9.0		12.0	GHz
+5V DC Supply Range		+4.9	+5.0	+5.2	V
-5V DC Supply Range		-5.2	-5.0	-4.9	V
+5V DC Supply Current			110		mA
-5V DC Supply Current			40		mA
LO Power		+3	+5	+7	dBm
LO VSWR			1.5:1		Ratio
RF VSWR			2.5:1		Ratio
I/Q Baseband Filter Bandwidth ²	<1 dB Flatness	DC		275	MHz
I/Q Baseband Filter Stop Band ²	>25 dB Rejection	450		7000	MHz
I/Q Differential Output Impedance			100		Ω
I/Q DC Offset		-8	-4	+8	mV
Conversion Loss			8	10	dB
Noise Figure			8.5		dB
Input IP3	2-Tone, ∆f = 1 MHz		+23		dBm
Input P1dB			+13		dBm
LO-RF Isolation	No RF input drive		45		dB
LO-I/Q Isolation	No RF input drive		60		dB
Amplitude Imbalance		-0.5	±0.1	+0.5	dB
Quadrature Phase Error		-5.0	-1.0	+3.0	Degree
Operating Temperature Range		-40		+85	°C
LO/RF Input Power w/o Damage				+15	dBm

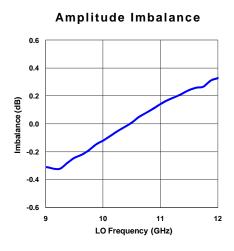
Notes:

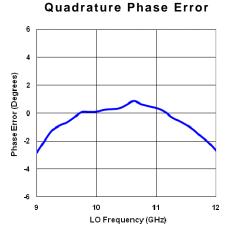
- 1. When RF > LO frequency: I = cos(), Q = sin()
- 2. Standard low pass filters. Contact factory for other options.

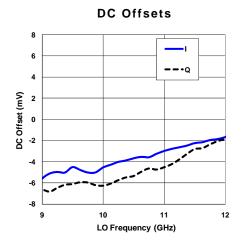
DIMENSION DRAWING








TYPICAL PERFORMANCE CHARACTERISTICS


Standard Test Conditions: +25°C, LO = +5 dBm, RF = +0 dBm @ LO+100 kHz.

APPLICATIONS

LO Input Drive Requirements

The AD90120B requires an LO signal be applied at +5 dBm nominal to demodulate the RF input. If the LO is pulsed, the I and Q outputs will be valid approximately 15 ns after the LO pulse is applied.

Interfacing with Differential ADCs

The AD90120B's differential I and Q outputs can be interfaced with differential high-speed analog-to-digital converters (ADCs). The AD90120B's I and Q outputs are DC-coupled with a common-mode voltage of 0 V (ground). Most ADCs have a positive input common-mode voltage requirement between 0.8 V and 2.5 V.

Series DC blocking capacitors can be used to float the I and Q signals to the ADC's common-mode voltage. Figure 1 shows the AD90120B interfaced to a dual ADC with differential inputs.

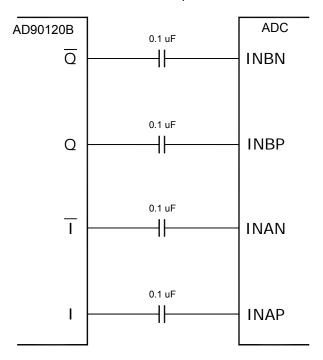


Figure 1. Differential ADC Interface

I/Q DEMODULATION

The AD90120B converts an RF signal centered at the LO frequency into I and Q baseband outputs. To understand the process of I/Q demodulation, first consider the case of an ideal demodulator. The original RF signal is defined using the complex envelope representation:

$$\mathbf{z}(t) = \mathbf{R} \Big[A(t) e^{j(2\pi f_c t + \phi(t))} \Big]$$
 (1)

 $\mathbf{z}(t)$ is the real time-domain signal present at the RF port of the demodulator centered at frequency f_c . $\mathbf{z}(t)$ has amplitude A(t) in volts and phase $\phi(t)$ in radians. Both A(t) and $\phi(t)$ are time-dependent. $\mathbf{R}[\]$ denotes taking only the real part of the expression.

 $\mathbf{Z}(t)$ can be written in terms of two orthogonal signals, I(t) and Q(t):

$$z(t) = I(t)\cos(2\pi f_c t) - Q(t)\sin(2\pi f_c t)$$
 (2)

where

$$A(t) = \sqrt{I^{2}(t) + Q^{2}(t)}$$
 (3)

and

$$\phi(t) = \arctan(Q(t), I(t)) \tag{4}$$

An ideal quadrature demodulator extracts the I(t) and Q(t) signals defined in (2). A real demodulator introduces several linear distortions including conversion loss, amplitude imbalance, quadrature phase error, I-axis phase rotation, and I/Q DC offsets. After applying these linear distortions, the real measured I and Q output signals are obtained:

$$\hat{I}(t) = C_I(\cos\theta_R I(t) - \sin\theta_R Q(t)) + B_I$$
(5)

$$\hat{Q}(t) = C_Q(\cos\theta_R\cos\theta_E Q(t) - \sin\theta_E I(t) + \sin\theta_R I(t)) + B_Q$$
(6)

 C_I is the I channel conversion loss factor, C_Q is the Q channel conversion loss factor, θ_R is the I-axis phase rotation in radians, B_I is the I channel DC offset in volts, B_Q is the Q channel DC offset in volts, and θ_E is the quadrature phase error in radians.

When the LO and RF frequencies are not equal, $\theta_{\rm R}$ can be set to 0 to simplify (5) and (6):

$$\hat{I}(t) = C_I I(t) + B_I \tag{7}$$

$$\hat{Q}(t) = C_Q(\cos\theta_E Q(t) - \sin\theta_E I(t)) + B_Q \quad (8)$$

 θ_R is only important in applications when the phase difference between the RF and LO signals must be known (i.e. phase detector).

Example: Apply a 10 GHz CW LO signal at +5 dBm and a 10.001 GHz CW RF signal at -2 dBm. To estimate the AD90120B's $\hat{I}(t)$ and $\hat{Q}(t)$ signals, start by determining all the parameters in (7) and (8).

 C_I and C_Q are determined by the conversion loss and amplitude imbalance of the AD90120B. From the datasheet's typical performance plots at 10 GHz, use 8 dB conversion loss and -0.12 dB amplitude imbalance to find C_I and C_Q :

$$\frac{C_I + C_Q}{2} = 10^{(-8/20)} = 0.3981 \tag{9}$$

$$20\log(\frac{C_{\varrho}}{C_{I}}) = -0.12\tag{10}$$

$$C_I = 0.4008$$
 $C_O = 0.3954$ (11), (12)

Quadrature phase error and DC offsets are also obtained from the typical performance plots at 10 GHz.

$$\theta_{\scriptscriptstyle E} = 0.1 Deg. = -0.0017 Radians \tag{13}$$

$$B_I = -0.0045V$$
 $B_O = -0.0062V$ (14), (15)

The next step in estimating $\hat{I}(t)$ and $\hat{Q}(t)$ is to calculate the ideal I(t) and Q(t) from the RF input signal. Given that the RF signal frequency is 1 kHz greater than the LO frequency, I(t) and Q(t) define an upper sideband tone of 1 kHz having a constant amplitude of:

$$\frac{A^2}{0.1} = 10^{(-2.0/10)} \tag{16}$$

$$A = 0.2512V (17)$$

From (3) and (17) we know:

$$I(t) = 0.1776\cos(2\pi 1000t) \tag{18}$$

and

$$Q(t) = 0.1776\sin(2\pi 1000t) \tag{19}$$

The final step in estimating $\hat{I}(t)$ and $\hat{Q}(t)$, the demodulator's real I and Q outputs signals, is to insert (11), (12), (13), (14), (15), (18), and (19) into (7) and (8) giving the final result:

$$\hat{I}(t) = 0.071\cos(2\pi 1000t) - 0.0045$$

$$\hat{Q}(t) = 0.070\sin(2\pi1000t - 0.0017) - 0.0062$$