

Return to the Webpage

DATASHEET

Features

- 100kHz to 35 GHz Bandwidth
- Contains 2 Balanced PIN/LA
- Hermetically Sealed Package
- Very Low Skew
- Dual Optical Fiber Inputs with Length Matched
- AC-Coupled output with Threshold Control

Applications

- High Speed Sensing
- Transponder Linear Receiver up to 30 GHz
- 30 GHz Analog RFoF Link

The GHBD Balanced Photoreceiver is designed for high-speed analog and digital light detection, offering exceptional performance with a differential gain of approximately 2800 V/W and a bandwidth of up to 40 GHz. It features two waveguide-integrated PIN photodiodes and a limiting amplifier in a compact SMD package with matched fiber lengths. The limiting amplifier delivers a differential output voltage swing of approximately 600 mV. The device achieves excellent electrical and optical phase propagation with a total skew of less than 5 ps between balanced signal paths and 10 ps total skew for all fiber pairs. Independent DC output voltage monitoring is available for OUTN and OUTP, and each amplifier path includes a threshold control at the linear amplification stage to optimize the differential output signal. This photoreceiver is ideal for applications requiring high sensitivity and high-speed balanced detection.

Specifications ^[1]

Parameter		Min	Typical	Max	Unit			
Differential conversion a	2000	2800		V/W				
Photodiode DC responsivity		0.5	0.6	0.75	A/W			
Polarization dependent loss			0.4	0.6	dB			
Optical return loss		27	30		dB			
Bit rate			43		Gbit/s			
3dB cut-off frequency [3]]	27	31		GHz			
Lower frequency cut off				100	kHz			
Electrical output	f = 0.5 to 15 ^[3]			-10	dB			
reflexion coefficient	f = 15 to 50 GHz ^[3]			0	uв			
Differential output voltage swing $(P_{opt} \ge 0dBm)^{[2]}$			600		mV			
Skew _{Rx}			1	5	ps			
Skew _{Set}			10	ps				
Equivalent input noise d			80	pA/√Hz				
Sensitivity ^{[2], [4]}		-10	-5	dBm				
Amplifier supply current			85	100	mA			
Photodiode dark current			5	300	nA			
Power consumption			0.45	0.6	w			
	Operation C	onditions	_					
Operating case temperature range		0		+75	°C			
Relative humidity range		5		85	%			
Operating wavelength range		1530		1620	nm			
Average optical input power range		-10		4	dBm			
Photodiode bias voltage		2.0	2.25	2.75	V			
Amplifier supply voltage		-5.3	-5.2	-4.8	V			
Absolute Maximum Ratings								
Storage Temperature	-40		+85	°C				
Photodiode bias voltage	0		+3.5	V				
Amplifier supply voltage	-5.5		+0.3	v				
Amplifier adjustment vo	-5.5		+0.3	V				
Amplifier threshold cont	-7.0		+7.0	v				
Maximum average optic			9	dBm				
Electro static discharge	-500		500	v				
Fiber bend radius	16			mm				

Notes:

[1]. $V_{PD1} = V_{PD2} = \pm 2.25 \text{ V}, V_{EE} = -5.2 \text{V}; V_{adj}2 = -2.4 \text{ V}, \lambda = 1550 \text{ nm}, T = 25^{\circ}\text{C}$

[2]. Measurements performed in single ended conditions

[3]. Measured using 860330A 50 GHz Lightwave component analyzer

[4]. Evaluated from NRZ eye diagram and BER measurement at 40Gbit/s (BER 10⁻¹², PRBS 2³¹ -1,

E sales@photonwares.com

back to back)

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 06/10/25

© Photonwares	Corporation
---------------	-------------

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

DATASHEET

Mechanical Dimensions (mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Block Diagram

Pin	Symbol	Description
1	V _{PD1}	Photodiode 1 supply
3	V _{THCN}	Amplifier threshold control negative
4	V _{THCP}	Amplifier threshold control positive
6	V_{adj}	Amplifier adjustment control
7	VOUTPDC	DC voltage monitor on OUTP
8	VOUTNDC	DC voltage monitor on OUTN
16	V _{PD2}	Photodiode 2 supply
17	outN	Rf-output negative – connector
18	outP	Rf-output positive – connector
9, 10, 11, 12	N/C	Not connected
13	V _{EE}	Amplifier supply voltage
2, 5, 14, 15	GND	Ground

E sales@photonwares.com

© Photonwares Corporation

P +1 781-935-1200

W www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

DATASHEET

Applications

DPSK (Differential Phase Shift Keying) modulation has two advantages compared to conventional amplitude modulation: Higher sensitivity and better spectral efficiency.

DPSK receiver

43 Gbit/s DPSK Eye Diagram

by courtesy of W.Idler, Alcatel

(0.1 nm, BER 10-9, PRBS 223-1)

(0.1 nm, BER 10-9, PRBS 223-1)

E sales@photonwares.com

© Photonwares Corporation

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

DATASHEET

Typical Performance

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

E sales@photonwares.com

DATASHEET

Ordering Information

	1		30	1		11	1
Prefix	Detector Type	Wavelength Range	Bandwidth	TEC	Module*	Configuration	Connector
GHBD-	PIN = 1	1300-1600nm = 1	30GHz = 30	Non = 1	Non = 1 Yes = 2	Standard = 11	LC/PC =1 FC/PC = 2 FC/APC = 3 Special = 0

* Module contains driver and power supply.

© Photonwares Corporation

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

E sales@photonwares.com

DATASHEET

Laser Safety

This product meets the appropriate standard in Title 21 of the Code of Federal Regulations (CFR). FDA/CDRH Class 1M laser product. This device has been classified with the FDA/CDRH under accession number 0220191. All versions of this laser are Class 1M laser products, tested according to IEC 60825-1:2007 / EN 60825-1:2007. An additional warning for Class 1M laser products. For diverging beams, this warning shall state that viewing the laser output with certain optical instruments (for example eye loupes, magnifiers, and microscopes) within a distance of 100 mm may pose an eye hazard. For collimated beams, this warning shall state that viewing the laser output with certain instruments designed for use at a distance (for example telescopes and binoculars) may pose an eye hazard.

Wavelength = $1.3/1.5 \mu m$.

Maximum power = 30 mW.

E sales@photonwares.com