NanoSpeed ${ }^{\text {TM }}$ Ultra-Fast 1x1, 1x2, 2X2 Fiber Optical Switch (5ns Rise/Fall Time, Bidirectional)
(Protected by U.S. patents 7,403,677B1; 6,757,101B2; and pending patents)

Features

- High Reliability
- High Speed
- Low loss
- Compact

Product Description
The NS Ultra-Fast (NF) Series fiber optical switch is based on a patented electro-optical configuration, featuring low optical loss, high optical power handling, and wide temperature operation with built-in compensation. The NS fiber optical switch meets the most demanding switching requirements of continuous operations over 25 years and non-mechanical ultra-high reliability (passed Telcordia and space qualifications). It has an ultra-fast rise and fall time about 5 ns , repetition rate up to 1 MHz , and can generate short optical pulse about 60 ns .
The NF Series switch is mounted on a specially designed electronic driver using a 5 V TTL control signal through a SMA input and a 110 V power plug-in.

Performance Specifications

NanoSpeed U Series Switches	Min	Typical	Max	Unit
1900-2200nm		0.8	1.5	dB
Insertion 1260~1650nm		0.6	1.0	
Insertion ${ }^{\text {Loss }}{ }^{\text {1] }}$ 960~1100nm		1.2	1.5	
Loss 780-960nm		1.5	1.8	
680-780nm		1.8	2.0	
Cross Talk ${ }^{[2]}$ Single Stage	18	25	30	dB
Durability	10^{14}			cycles
PDL (SMF Switch only)		0.15	0.3	dB
PMD (SMF Switch only)		0.1	0.3	ps
ER (PMF Switch only)	18	25		dB
IL Temperature Dependency		0.25	0.5	dB
Return Loss	45	50		dB
Optical Rise Time ${ }^{[3]}$		5	10	ns
Optical Fall Time ${ }^{[3]}$		5	10	ns
Repetition Rate	DC		200	kHz
Repetition Rate	DC		1000	kHz
Optic power Normal power version		300		mW
Handling ${ }^{[4]}$ High power version			5	W
Operating Standard	-5		75	${ }^{\circ} \mathrm{C}$
Temperature Special version	-30		85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		100	${ }^{\circ} \mathrm{C}$

[1] Measured without connectors.
[2] Cross talk is measured at 100 kHz , which may be degraded at the higher repeat rate.
[3] It is defined as the rising or fall time between 10% and 90% of optical intensities.
[4] Defined at $1310 \mathrm{~nm} / 1550 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

15 Presidential Way, Woburn, MA 01801 Tel: (781) 9351200 Fax: (781) 935-2040
www.agiltron.com

Mechanical Dimensions (Unit: mm)

Package Type -I: NFSW-1x1

Package Type -II: NFSW-1x2

Mechanical Dimensions (Unit: mm)

Package Type -III: NFSW-2x2

Port 1 (Red)

Package Type-IV: NFHW-1x1 \& 1x2

NanoSpeed ${ }^{\text {TM }}$ Ultra-Fast 1x1, 1x2, 2X2 Fiber Optical Switch (5ns Rise/Fall Time, Bidirectional)

NFSW and Driver Mounting Dimension (mm)

Electronic Driving Information

1×1 Optical Path	TTL Signal
ON for normally-open, OFF for normally-close	$\mathrm{L}(0 \mathrm{~V})$
OFF for normally-open, ON for normally-close	$\mathrm{H}(>3.5 \mathrm{~V})$

1x2 Optical Path	TTL Signal
Port $1 \rightarrow$ Port 2	L (OV)
Port $1 \rightarrow$ Port 3	H (>3.5V)

2×2 Optical Path	TTL Signal
Port $1 \rightarrow$ Port 3, Port 2 \rightarrow Port 4	L (0V)
Port $1 \rightarrow$ Port 4, Port 2 \rightarrow Port 3	H $(>3.5 \mathrm{~V})$

1. Power Input:
110-220 AC
2. Power Consumption:
<10W

NanoSpeed ${ }^{\text {TM }}$ Ultra-Fast 1x1, 1x2, 2X2 Fiber Optical Switch

(5ns Rise/Fall Time, Bidirectional)

Typical Optical Switch Repetition Measurement (1MHz)

Typical Optical Pulse Generation (60ns)

Typical Wavelength Dependence Extinction Measurement

Ordering Information

.		\square						
	Type	Wavelength	Grade	$\begin{aligned} & \text { Repetition } \\ & \text { Rate } \end{aligned}$	Fiber Type		Fiber Length	Connector ${ }^{\text {[1] }}$
NFSW = Normal power version NFHW = High Power version	$\begin{aligned} & 1 \times 1=11^{[2]} \\ & 1 \times 2=12 \\ & 2 \times 2=22 \end{aligned}$	$1060=1$ $2000=2$ $1310=3$ $1480=4$ $1550=5$ $1625=0$ $780=7$ $850=8$ $650=E$ $550=F$ $400=G$ $1565 \sim 1620=1$ Special $=0$	Single stage $=1$	$\begin{aligned} & 200 \mathrm{kHz}=2 \\ & 1 \mathrm{MHz}=6 \end{aligned}$	SMF-28 $=1$ H11060 $=2$ HI780 $=3$ PM1550/400 $=4$ PM1550/250 PM850 $==8$ PM980 $=9$ Special $=0$	Bare fiber=1 900um loose tube=3 Special $=0$	$0.25 \mathrm{~m}=1$ $0.5 \mathrm{~m}=2$ $1.0 \mathrm{~m}=3$ Special $=0$	None=1 FC/ PC=2 $\mathrm{FC} / \mathrm{APC}=3$ $\mathrm{SC} / \mathrm{PC}=4$ SC/ APC $=5$ ST/ PC=6 LC/ PC=7 LC/ APC=8 Special $=0$

[1] Contact us for high power connector
[2] For wavelength shorter than 950 nm , customer needs to order 1×2, leaving the extra port unused. This make the device stable by guiding the unwanted light out.

NanoSpeed ${ }^{\text {TM }}$ Ultra-Fast

 1x1, 1x2, 2X2 Fiber Optical Switch (5ns Rise/Fall Time, Bidirectional)
Q\&A

Q: Does NS device drift over time and temperature?
A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to $-40-100^{\circ} \mathrm{C}$. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/crosstalk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device?
A: 100 to 400 V depending on the version.
Q: How does the device work?
A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?
A: NS devices have been tested to have an optical response of about 300 ps. However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20 MHz with low electrical power consumption.

