NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series MultiMode Fiber Optical Switch (Bidirectional)

(Protected by U.S. patent 7,403,677B1 and pending patents)

Features

- Solid-State
- High speed
- Ultra-high reliability
- Low insertion loss
- Compact

Product Description

The NanoSpeed ${ }^{\text {TM }}$ series multi-mode 1×2 solid-state fiber (MMF) optic switch connects optical channels by redirecting an incoming optical signal into a selected output optical fiber. This is achieved using patent nonmechanical configurations with solid-state all-crystal designs, which eliminates the need for mechanical movement and organic materials. The NS fiber optic switch is designed to meet the most demanding switching requirements of ultra-high reliability, fast response time, and continuous switching operation. This series of switches are bidirectional intrinsically.

The NS Series switch is controlled by 5V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate.

Performance Specifications

NanoSpeed MMF 1x2 Switch	Min	Typical	Max	Unit
Central wavelength ${ }^{[1]}$	630		2000	nm
Durability	10^{14}			cycles
Insertion Loss ${ }^{[2]}$		1.5	1.8	dB
Cross Talk ${ }^{[3]}$	15	18		dB
MDL		0.3		dB
IL Temperature Dependency		0.25	0.5	dB
Return Loss	20	25		dB
Response Time (Rise, Fall)			300	ns
Fiber Type	50/ 125, $62.5 / 125$, or equivalent			
Driver Repeat Rate 100 kHz driver	DC	100		kHz
Driver Repeat Rate 500 kHz driver	DC	500		
Optic power handling ${ }^{[4]}$		0.5	2	W
Operating Temperature	-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$

[1] Operation bandwidth is $H-25 \mathrm{~nm}$ approximately at 1550 nm .
[2] Measured without connector under source with CPR $=13 \mathrm{~dB}$
[3] Cross talk is measured at 100 kHz under source with $\mathrm{CPR}=13 \mathrm{~dB}$, which may be degraded at the high repeat rate.
[4] Defined at wavelength $>1300 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series

Mechanical Dimensions (mm)

Optical Path Driving Table

Optical Path	TTL Signal
Port 1 \rightarrow Port 2	$\mathrm{L}(<0.8 \mathrm{~V})$
Port 1 \rightarrow Port 3	$\mathrm{H}(>3.5 \mathrm{~V})$

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series

Multi-Mode Fiber Optical Switch

 (Bidirectional)
Driving Board Selection

Maximum Repetition Rate	Part Number (P/N)
100 kHz	SWDR-11a261111
500 kHz	SWDR-11a291111

* Note: For customers that prefer to design their owen driving circuit, they are responsible for the optical performance. For more technical information, please contact us.

Speed and Repetition Measurement

Ordering Information

NSMS -	12		1	\square	\square			\square
	Type	Wavelength	Configuration	Package	Fiber T	ype	Fiber Length	Connector [2]
NSMS = Nanospeed MMF Switch	$1 \times 2=12$	$\begin{aligned} & 1060 \mathrm{~nm}=1 \\ & \text { L Band }=2 \\ & 1310 \mathrm{~nm}=3 \\ & 1410 \mathrm{~nm}=4 \\ & 1550 \mathrm{~nm}=5 \\ & 660 \mathrm{~nm}=0 \\ & 850 \mathrm{~nm}=8 \\ & \text { Special }=0 \end{aligned}$	Single stage = 1	$\begin{aligned} & \text { Standard }=1 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 50 / 125 \mathrm{MMF}=5 \\ & 62.5 / 125 \mathrm{MMF}= \\ & 6 \\ & \text { Special }=0 \end{aligned}$	Bare fiber=1 900um loose tube=3 Special $=0$	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0 \mathrm{~m}=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/ PC=2 FC/ APC=3 SC/ PC=4 SC/ APC $=5$ ST / PC=6 LC/ PC=7 Duplex LC=8 LC/ APC=9 Special $=0$

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series
 Multi-Mode Fiber Optical Switch (Bidirectional)

Q\&A

Q: Does NS device drift over time and temperature?
A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to $-40-100^{\circ} \mathrm{C}$. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/crosstalk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device?
A: 100 to 400 V depending on the version.
Q: How does the device work?
A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?
A: NS devices have been tested to have an optical response of about 300 ps . However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20 MHz with low electrical power consumption.

