

NanoSpeed[™] Fiber Optical Polarization Modulator/Switch (Low-Loss, Bidirectional, All Wavelengths)

(Protected by U.S. patents 7,403,677B1; 6,757,101B2; and pending patents)

Features

- High Reliability
- High Speed
- Low loss
- Compact

Product Description

The NS Series fiber optical polarization modulator/switch is based on a patented electro-optical configuration, featuring low optical loss and wide temperature operation with built-in compensation. The device dynamically controls the optical phase of the transmitting light, meeting the most demanding requirements of continuous operations over 25 years and non-mechanical ultra-high reliability (passed Telcordia and space qualifications) The device is bidirectional in which the input and output ports are interchangeable.

This device is mounted on a specially designed electronic driver using a 5V TTL control signal through SMA input and a 12V power supply (wall pluggable). The maximum phase change can be adjusted by a pot on the board

Performance Specifications

NanoSpeed P Series Switches			Typical	Max	Unit
Insertion Loss ^[1]	1900-2200nm		0.8	1.8	
	1260~1650nm		0.6	1.0	dB
	960~1100nm		0.8	1.3	
	780-960nm		1.2	1.5	
	520 - 680nm		1.5	2.3	•
IL Temperature Dependency			0.25	0.5	dB
Durability		1014			cycles
Polarization Mode Dispersion (Non PM)			0.1	0.3	ps
Return Loss	45	50		dB	
Polarization State Rotation				90	Degree
Analog Modulation rate ^[2]		DC	50	200	KHz
Digital Modulation Rate [3]		DC		1	MHz
Optic power Handling ^[4]	Normal power version		300		mW
	High power version		ř.	10	W
Operating Temperature	Standard	-5	ř	75	00
	Special version	-30		85	- °C
Storage Temperature		-40		100	°C
	without connectors				

[1] Measured without connectors.

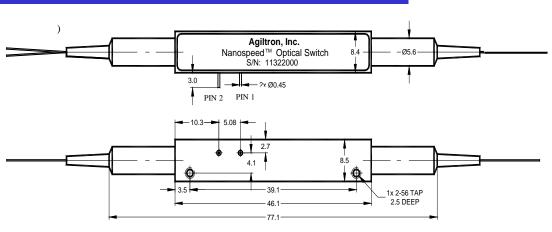
[2] The phase change is proportionally to the 0-5V control signal

[3] The maximum phase change is set at a predetermined value

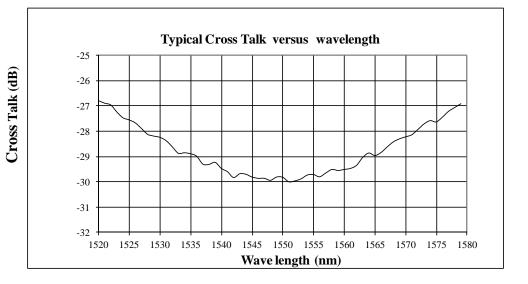
[4] Defined at 1310nm/1550nm. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

Applications

- Sensor
- Data process
- Instrumentation

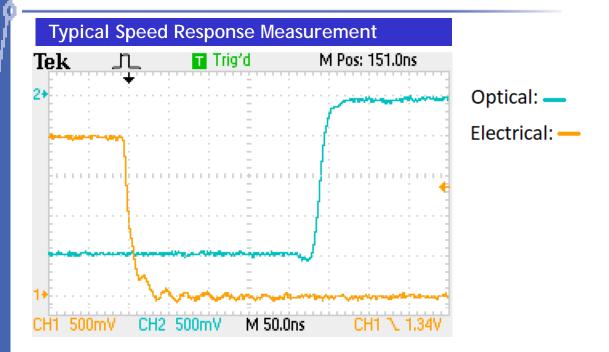

Revised: 1-27-2021

NanoSpeed[™]



Fiber Optical Polarization Modulator/Switch (Low-Loss, Bidirectional, All Wavelengths)

Mechanical Dimensions (Unit: mm)


Typical Wavelength Dependence Extinction Measurement

15 Presidential Way, Woburn, MA 01801 Tel: (781) 9351200 Fax: (781) 935-2040

www.agiltron.com

NanoSpeed[™] Fiber Optical Polarization Modulator/Switch (Low-Loss, Bidirectional, All Wavelengths)

Ordering Information

NSPS -								
	Туре	Wavelength	Temperature range	Repetition Rate		r Type 'output)	Fiber Length	Connector
	Standard = 11 1W = 01 5W =05 10W = 10 20W =20		Standard=1 Large = 2	100kHz=1 200KH =2 1MHz=6	HI1060=2	Bare fiber=1 900um tube=3 Special=0	0.5m=2 1.0 m=3 Special=0	None=1 FC/PC=2 FC/APC= 3 SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 LC/APC=8 Special=0

15 Presidential Way, Woburn, MA 01801 Tel: (781) 9351200 Fax: (781) 935-2040

www.agiltron.com

NanoSpeed[™] Fiber Optical Polarization Modulator/Switch (Low-Loss, Bidirectional, All Wavelengths)

Q&A

Q: Does NS device drift over time and temperature?

A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to -40 -100 °C. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/cross-talk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device? **A:** 100 to 400V depending on the version.

Q: How does the device work?

A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?

A: NS devices have been tested to have an optical response of about 300 ps. However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20MHz with low electrical power consumption.