NanoSpeed ${ }^{\text {TM }}$ 8x12 Fiber Optical Switch (Bidirectional)
(Protected by U.S. patents 7,403,677B1; 6,757,101B2; and pending patents)
Product Description
The NS Series fiber optic switch is developed for fast switching and low optical loss. This is achieved using patented electro-optical configuration featuring clean fast response without ripples. The NS fiber optic switch meet the most demanding switching requirements of continuous operations over 25 years and non-mechanical ultra-high reliability. The 8×12 NS switch is mounted on a single control board with TTL signal inputs.
The NS Series switch is controlled by 5V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate.

Performance Specifications

NanoSpeed 8x12 Switches		Min	Typical	Max	Unit
Insertion Loss ${ }^{[1]}$	$1900-2200 \mathrm{~nm}$		4.5	6	dB
	$1260 \sim 1650 \mathrm{~nm}$		4	5	
	$960 \sim 1100 \mathrm{~nm}$		6	7	
	780-960nm		7	8	
Cross Talk ${ }^{[2]}$		60	65	70	dB
Durability		10^{14}			cycles
PDL (SMF Switch only)			0.15	0.3	dB
PMD (SMF Switch only)			0.1	0.3	ps
ER (PMF Switch only)		18	25		dB
IL Temperature Dependency			0.25	1	dB
Return Loss		45	50	60	dB
Optical transition time ${ }^{[3]}$			100	300	ns
Repetition Rate		DC		200	kHz
Optic power Handling ${ }^{[4]}$	Normal power version		300		mW
	High power version			5	W
Operating Temperature	Standard	-5		75	${ }^{\circ} \mathrm{C}$
	Large range version	-30		85	
Storage Temperature		-40		100	${ }^{\circ} \mathrm{C}$

[1] Measured without connectors. For other wavelengths, please contact us.
[2] Cross talk is measured at 100 kHz , which may be degraded at the higher repeat rate.
[3] It is defined as the rising or fall time between 10% and 90% of optical intensities.
[4] Defined at $1310 \mathrm{~nm} / 1550 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.
High power version available by incorporating fiber core enlargement (expensive).

NanoSpeed ${ }^{T M}$
 8x12 Fiber Optical Switch
 (Bidirectional)

Typical Speed Response Measurement

Optical:
Electrical: \qquad

Typical Bandwidth Measurement

Ordering Information

NSSW	44	\square						
	Type	Wavelength	Power Handling	Repetition Rate	Fiber Type		Fiber Length	Connector ${ }^{[1]}$
		$1060=1$ $2000=2$ $1310=3$ $1480=4$ $1550=5$ $1625=6$ $780=7$ $850=8$ $650=E$ $1565 \sim 1620=L$ Special $=0$	$\begin{aligned} & 500 \mathrm{mw}=1 \\ & 5 \mathrm{~W}=2 \end{aligned}$	$\begin{aligned} & 200 \mathrm{kHz}=1 \\ & 1 \mathrm{MHz}=2 \end{aligned}$	SMF-28 $=1$ HI1060 $=2$ HI780 $=3$ PM1550/400 $=4$ PM1550 $/ 250=5$ PM850 $=8$ PM980 $=9$ Special $=0$	$\begin{aligned} & \begin{array}{l} 900 \text { um } \\ \text { tube }=3 \\ \text { Special }= \\ 0 \end{array} \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0 \mathrm{~m}=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/ PC=2 $\mathrm{FC} / \mathrm{APC}=3$ SC/ PC=4 SC/ APC $=5$ ST/ PC=6 LC/ PC=7 $L C / A P C=8$ Special $=0$

[^0][2]: NPLC version is available only for wavelength shorter than 780 nm .

(Bidirectional)

Q\&A

Q: Does NS device drift over time and temperature?
A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to $-40-100^{\circ} \mathrm{C}$. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/crosstalk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device?
A: 100 to 400V depending on the version.

Q: How does the device work?
A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?
A: NS devices have been tested to have an optical response of about 300 ps. However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20 MHz with low electrical power consumption.

[^0]: [1]: Please contact the sale about the high power connector for NPHW version.

