NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

(Protected by U.S. patent 7,403,677B1 and pending patents)

Product Description

The NSDR series of drivers provide high voltage of signals to drive the NS, NP and NF series of solid state switches. The push-pull output design ensures fast transition for both rising and falling edges with the high repeat rate, and it is especially suitable for driving capacitive switch loads.

Features

- High speed
- High repetition
- High output voltage
- Wide input voltage range
- TTL/ CMOS control
- Push-Pull output design
- Low power consumption
- Compact and low cost

Applications

- Optical Switch
- EO device driver

The standard driver controls one individual switch. Drivers that control multiple switches also are available, please call Sales at (781) 935-1200.

Performance Specifications

Specs		Min	Typical	Max	Unit
Rising Time ($\left.T_{r}\right)^{[1]}$	NP \& NS type		85	100	ns
	NF type		5		
Falling Time ($\left.\mathrm{T}_{\mathrm{f}}\right)^{[1]}$	NP \& NS type		85	100	ns
	NF type		5		
Switch Time (Rise, $\mathrm{S}_{\mathrm{r}}{ }^{[2]}$	NP \& NS type		315	350	ns
	NF type		180		
Switch Time (Fall, $\mathrm{Sf}_{\mathrm{f}}{ }^{[2]}$	NP \& NS type		315	350	ns
	NF type		180		
Durability		10^{14}			cycles
Repetition Rate ${ }^{[3]}$		0		1	MHz
Pulse Width		1.0			us
Control Input (TTL pulse)		0		5	V
Power Consumption ${ }^{[4]}$		1	5	12	W
Power Supply			12		V
Operating Temperature		-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		80	${ }^{\circ} \mathrm{C}$
Electrical Connector		SMA			

Note:
[1]: Transition time between 10% and 90% change of optical intensity.
[2]: Duration from begin of electronic signal to end of optical intensity change when driving switch.
[3]: 1 MHz repeat rate may not be available for some type of switches.
[4]: The power consumption highly depends on the repeat rate. The maximum power consumption is defined for 1 MHz operation.

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

Response Time Definition

Response Time (Measured @ 500kHz)

Tek Run: 200MS/s ET Sample

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

㫧 AGILTRON
 inc

Drivers for Dual-stage NS 1x1 (60kHz) and Dual-stage NP 1x1 (200kHz)

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

Drivers for NS 1x1 (500kHz) and for NP $\mathbf{1 x 1}$ Switch ($\mathbf{1 M H z)}$

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

Drivers for NS Dual-stage 1x2 (60kHz) and for NP Dual-stage $\mathbf{1 x 2}$ (200kHz)

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

Mechanical Drawings for Dual Stage 1x2

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

1x1/1x2,2x2 NF Type Switch Mounted on 1MHz Driver

NF Driver is completed with a special power supply with 110-220AC power input.
It consumes about 10 W at the fastest repetition operation

NanoSpeed ${ }^{\text {TM }}$ Switch Driver for NP and NF Type Switches

Power Connector

P/ N: SC1313-ND
Power Barrel Connector J ack 2.00 mm ID ($0.079^{\prime \prime}$), 5.50 mm OD ($0.217^{\prime \prime}$) Through Hole,

Right Angle

12V Wall Plug DC Power Supply Interface

Ordering Information

NSDR-	$\square \square$	$\square \square$	\square	\square	\square	\square	\square
	Switch type	Configuration	Repeat rate	Switch QTY	Channel \# ${ }^{[1]}$	Control Mode ${ }^{[2]}$	Power supply
	NS, dualstage $=2 \mathrm{~S}$	$1 \times 1,1 \times 2$, $2 \times 1,2 \times 2=1 a$ $1 \times 3,3 \times 1=3 a$ $1 \times 4,4 \times 1=4 a$ Special $=00$	$\begin{aligned} & 60 \mathrm{kHz}=6 \\ & 300 \mathrm{kHz}=9 \end{aligned}$	$\begin{aligned} & \text { Single switch } \\ & =1 \\ & \text { Multiple- } \\ & \text { switch =G } \end{aligned}$	Standard (single channel) $=1$ N parallel channel $=\mathrm{N}$ Special $=0$	$\begin{aligned} & \mathrm{TTL}=1 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 12 \mathrm{VDC}=1 \\ & \text { Special }=0 \end{aligned}$
	NP, single stage $=1 \mathrm{P}$ NP, dual stage $=2 P$ NF, single stage $=1 \mathrm{U}$ NF, dual stage $=2 \mathrm{U}$	1x1, 1x2, $2 \times 1,2 \times 2=1 a$ $1 \times 3,3 \times 1=3 a$ $1 \times 4,4 \times 1=4 a$ Special $=00$	$\begin{aligned} & 200 \mathrm{kHz}=\mathrm{M} \\ & 1 \mathrm{MHz}=\mathrm{H} \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Single switch } \\ & =1 \\ & \text { Multiple- } \\ & \text { switch =G } \end{aligned}$	Standard (single channel) $=1$ N parallel channel $=\mathrm{N}$ Special $=0$	$\begin{aligned} & \mathrm{TTL}=1 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 12 \mathrm{VDC}=1 \\ & 110 \mathrm{VAC}^{[3]}= \\ & \mathrm{A} \\ & \text { Special }=0 \end{aligned}$

1]: Multiple-channel version is designed for the module with multiple switches on driving PCB.
[2]: USB, RS232 control mode is also available for low repeat rate operation $<\mathrm{kHz}$. Please contact sales.
[3]: 110AVC power supply is needed for NF type switches.

