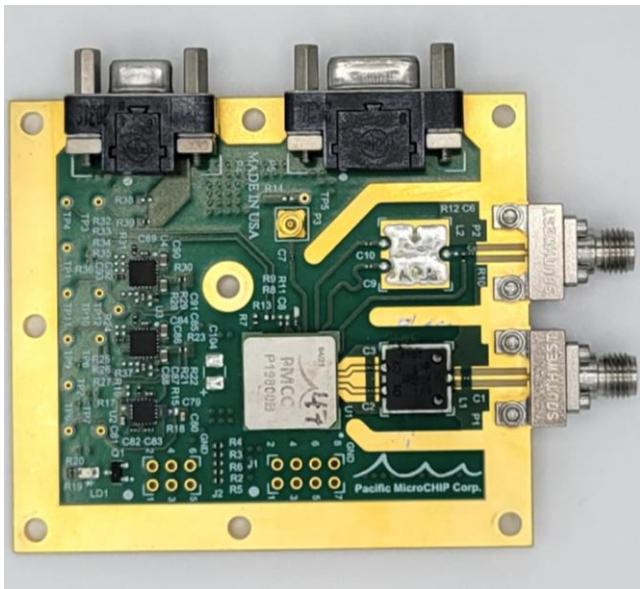



## ASIC Summary

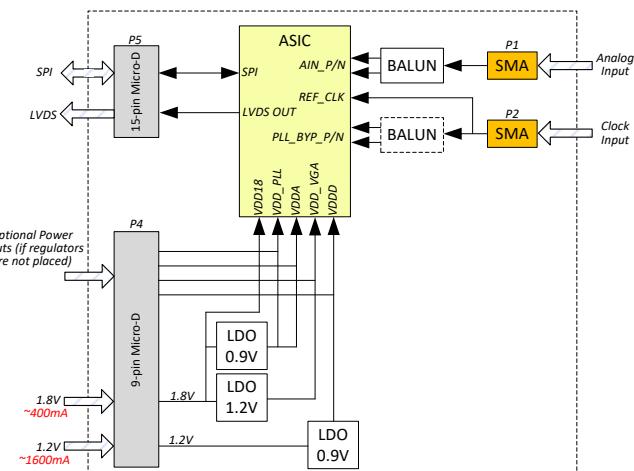

The P19800B spectrometer ASIC processes up to 5.5GHz bandwidth input signals provided by microwave front ends. The ASIC (Fig.1) includes a VGA, a 6-bit ADC, an FFT based on polyphase filtering and an accumulator capable of accumulating up to 34 seconds of frequency-domain data. The chip also includes an output data interface, a PLL based frequency synthesizer and a SPI interface for the ASIC's programming and data interchange at low speed. The chip (Fig.2) is offered in a BGA package and as an IP block for integration into SoCs. The P19800B ASIC is also offered on an evaluation board (Fig.3). A block diagram of the PCB's components is shown in Fig.4



**Figure 1. A block diagram of the ASIC.**



**Figure 2. The ASIC chip and the BGA package.**




**Figure 3. EVAL2 Evaluation Board.**

## ASIC Operational Capabilities

The ASIC digitizes the RF signal and splits the spectrum into 8192 frequency bins. The power or magnitude is computed for each bin and the result accumulated.

- Input signal bandwidth up to 5.5GHz
- Sampling rate up to 8GS/s
- Input signal FSR programmable from 66mV to 400mV pp differential
- Digitizer ENOB > 4.5-bit to 4GHz
- Power consumption < 1.6W (full functionality)
- Power consumption < 1.2W (4MHz bin resolution)
- Up to 8192 Frequency bins within 0 to 4GHz
- Accumulation time programmable from 2us to 34s
- An integrated 16GHz PLL with selectable Fref
- An SPI interface for control, diagnostics and readout
- Temperature range -40°C to 110°C
- 15 x 15 BGA package (12.8mm x 12.8 mm)
- Fabrication technology 28nm CMOS



**Figure 4. Block diagram of EVAL2**

## EVAL2 Operation requirements:

- +1.2V @ 1.6A and +1.8V @ 400mA
- Single-ended reference clock @ 0dBm with frequency between 32MHz and 2GHz.
- SPI Master for configuring and controlling the ASIC
- (Optional) LVDS receiver on an FPGA for faster data readout capability

## Applications

- Remote sensing instruments
- Radio astronomy
- Planet and Sun exploration missions
- Synthetic aperture radiometers