BW10-1550-Txx-PxFA

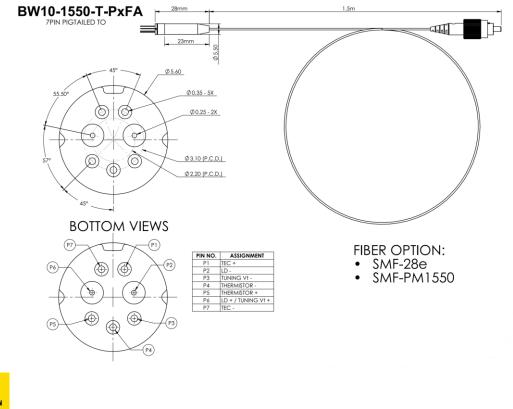
Description:

v2.2

BANDWIDTH10, LTD.

Bandwidth10's BW10-1550-Txx-PxFA is part of a family of lasers based on the innovative High Contrast Grating (HCG) single mode 1550 nm VCSEL.

Applications:


- Fiber sensors
- Optical gas sensors
- Biosensors
- Metrology / Interferometry

Features:

- TO-56 7Pin Small Form Footprint with integrated TEC
- Single Mode VCSEL
- Permanently attached 1.5 m single mode fiber (SMF or 1550 Panda) with FC/APC connector

- Swept source
- FMCW LIDAR / range finder
- Optical communications
- Start wavelength can be chosen within the C-and lower L-band.
- Wide Tuning Range: 8 nm, up to 16nm
- Fast Wavelength Tuning >10KHz
- High modulation bandwidth (10 Gbps)
- Internal optical isolator with isolation ratio >20 dB

Dimensional Drawing and Pin Assignment

CAUTION: Device is sensitive to electrostatic discharge.

Absolute Maximum Ratings

The device should be used within the defined absolute maximum ratings. Exceeding these parameters might damage the laser. The sign of the laser current, laser voltage and tuning voltage depends on the used laser driver. Please check the application notes or contact Bandwidth10 for further information.

Parameter	Symbol	Safe Ratings	Unit
Storage Temperature Storage at 70°C is limited due to the foam used in the shipment package. The pigtail TO was qualified for 85°C without package	T _{stg}	-20 to +70	°C
Operating Case Temperature	Tc	-5 to +70	°C
Absolute value of maximum VCSEL bias current between pin 2 and pin 6	_{bias_max}	25	mA
Absolute value of maximum VCSEL drive voltage between pin 2 and pin 6	$ V_{ld_max} $	3	V
Absolute value of maximum wavelength tuning voltage between pin 3 and pin 6	V _{tune_max}	See test sheet	V
Soldering Temperature	T _{sld}	350 (10 sec.)	°C

Operating Conditions

The table below shows the recommended operating conditions. The guaranteed parameters like output power and tuning range are valid under these operating conditions and tested in production. The user can operate the device at different operating conditions, i.e. can change the temperature or bias current, but parameters given in the general specification section are not guaranteed anymore. Please check the application notes and contact Bandwidth10 for information about the voltage polarities.

Parameter	Symbol	Values	Unit
Operating TEC temperature	T _{op}	Typically, around 25°C – see test sheet for further information	°C
Absolute value of operating VCSEL bias current between pin 2 and pin 6	I _{op}	Typically, around 18 mA – see test sheet for further information	mA
Absolute value of tuning voltage for achieving start wavelength	Vt@λ _{start}	Typically, around 0V – see test sheet for further information	V
Absolute value of tuning voltage for achieving stop wavelength	Vt@λ _{stop}	Typically, around 18 V – see test sheet	V

General Specification

The parameters below are guaranteed by design for I_{op} and T_{op} and might not be checked for each individual part. The tuning voltage sign and value might depend on the laser driver and might be different for floating, anode grounded or cathode grounded laser drivers.

Demonstra / Evertex ation	Symbol	Values			L Locit
Parameter / Explanation		Min	Typical	Max	Unit
Start Wavelength $@T_{op}$ and I_{op} Ideally, the start wavelength is achieved at 0V tuning voltage. However, this is not guaranteed and can differ from part to part. The 0V wavelength can be greater than the start wavelength. The desired start wavelength can be specified in the purchase order.	λ_{start}	1529		1579	nm
Guaranteed DC Tuning Range		8			
Minimum guaranteed tuning range is specified by the model number given on the		10			
ordering information section. 8 nm: BW10-1550-T-PxFA	GTR	12			nm
10 nm: BW10-1550-T10-PxFA 12 nm: BW10-1550-T12-PxFA		14			
14 nm: BW10-1550-T14-PxFA 16 nm: BW10-1550-T16-PxFA		16			
Stop wavelength @ T_{op} and I_{op} The stop wavelength is achieved by applying a voltage potential to pin 3 lower than the potential at pin 6. The tuning voltage for achieving the stop wavelength is indicated by the symbol VT _{Stop}	$\lambda_{ ext{stop}}$		λ_{start} -GTR		nm
Optical Output Peak Power @25° C TEC temperature and I _{op} over guaranteed tuning range	Р	0.4		2	mW
Operating TEC Temperature range The user can operate the laser within this temperature range. Parameters are only guaranteed at T _{op} TEC temperature (typically 25°C). If operated at lower or higher temp than T _{op} , the power might be different, and the wavelength range will be shifted.	T _{TEC}	5	T _{op}	35	°C
Absolute value of Threshold Current	I _{th}		7		mA
Absolute value of Laser Drive Voltage	V _{ld}	0	1.5	2.5	V
Resistance Measured between pin 2 and 6	Rs		50		Ω
Max. Mechanical Tuning Response We guarantee that the user can sweep the laser wavelength with at least 10kHz	f _{max}	10		-	kHz

(sinusoidal driving signal) or more. Please contact BW10 is a higher guaranteed sweep rate is required.					
Side-mode suppression ratio	SMSR	30	40		dB
Polarization Extinction Ratio for PM fiber version (BW10-1550-T-PPFA)	PER	20			dB
Linewidth (-3 dB FWHM), CW I _{bias} =I _{op} ,V _{Tune} =0V	σ			300	MHz
Relative Intensity Noise	RIN			-128	dB/Hz
Absolute value of Tuning Current	I _{tune}	0	-	100	μA
TEC Voltage	V_{TEC}		0.35	0.9	V
TEC Current	I _{TEC}		0.05	0.5	А
Temperature Tuning Coefficient If the TEC temperature is increased by 1K the wavelength is typically increased by 0.2nm.			0.2		nm/K
Current tuning coefficient If the laser current is increased by 1mA the wavelength is typically increased by 0.4nm.			0.4		nm/mA

System Design Recommendations

We recommend anode grounded laser drivers which ease the design of the tuning circuit.

Decomptor / Evolution	Symbol	Values			Unit
Parameter / Explanation	Symbol	Min	Typical	Max	Unit
Design Recommendation Bias Current (anode grounded laser driver)					
This value is an indication for circuit design considerations, we recommend using a circuit that can drive the laser up the given current. Note, that the recommended bias for each individual part might be lower and given in the test report.	I _{bias}			30	mA
Design Recommendation Tuning Voltage					
Note that the sign and min value of the tuning voltage depends on the used laser driver. Here we recommend and assume anode grounded laser drivers.	Vt	-30		0	V
When using other configurations, the user must ensure that, the potential at pin VT- must be equal or lower than on VT+. Please contact your local FAE if you have any questions.					

Design Recommendations TEC Temperature range	T _{TEC}	5	35	°C
Design Recommendations TEC voltage	V _{TEC}		0.9	V
Design Recommendations TEC current	I _{TEC}		0.5	А

Electrostatic Discharge (ESD)

LD+/LD- ESD classification: Class 1A, Human Body Model (HBM).

Vt- ESD classification: Class 0, Human Body Model (HBM).

Since this is an ESD sensitive device, proper ESD precautions (limit exposure to below 100V HBM) should be taken during every step of the assembly process.

Standard ESD testing was to MIL-STD-883, Human Body Model, with 3 pulses forward/reverse applied to the signal leads. Failure is defined as a measurable (>10%) change in a key parameter, optical output power for the tunable VCSEL. The LD+/LD- and Vt- of VCSEL TO fails at 350 Volts and <50 Volts respectively for damage to the laser chip, with a decrease in optical power output.

Order and Contact Information

	Мос	Contact Information				
	Standard 8 nm					
	BW10					
	Extended tu	ning range	versions:			
	BW10-7	1550-T1x-P	yFA			
	Please spe	ecify the par	ameter			
	Description	Value	Explanation	Bandwidth 10 Ltd.		
	Tuning	0	10 nm tuning rage	2080 Addison Street, Suite 2		
v		2	12 nm tuning rage	Berkeley, CA 94704,		
X	x Range		Range	4	14 nm tuning rage	USA
		6	16 nm tuning rage	info@bandwidth10.com		
		S	1.5m 900µm SMF28 fiber and FC/APC connector			
У	P PANDA liber. The harrow key FC/APC connector and output signal are aligned to the slow axis.					
14nm and 16 today. Please c	start wavelength in t onm versions with sta contact your local sal t wavelengths can be					